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Lecture I

• Points of departure

• Goals of this class

• Repeating what you are assumed to know
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History
• In the history of civilization there are 2 unrivalled 

accelerators:
– The invention of writing about 5-6000 years ago

– The invention of the scientific method for separating facts 
from fantasy about 5-600 years ago

• There is no topic more important to learn than the 
basics of the scientific method

• That does not mean that it is not – at times – rather 
boring ….
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Basics of causal beliefs

• First: doubt what you believe is a causal link until 
you can give good valid reasons justifying your 
belief

• Second: there are many types of good valid 
reasons for believing in a particular causal link
– For example if the overwhelming majority of certified 

scientists says that human activities contribute to global 
warming, then we are justified believing that by 
changing our activities we could contribute less to 
global warming 

• Third: random conjunctures (“correlation”) are not 
good valid reasons for believing in a causal link
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Causal correlations 
• This class will focus on how to distinguish 

between random conjunctures and that 
which might be a valid causal correlation

• That which might be a valid causal 
correlation will need a causal mechanism
explaining how the cause can produce the 
effect before we have a valid reason to 
believe in the causal link 
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Causal mechanism

• Elster 2007 Explaining Social Behaviour:

• ”mechanisms are frequently occurring and 
easily recognizable causal patterns that are 
triggered under generally unknown 
conditions or with indeterminate 
consequences” (page 36)

• Also sometimes limited to “causal chains”
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Primacy of theory
• To say it more bluntly: If you do not have a 

believable theory (and this may well start as a 
fantasy) then regression techniques will tell you 
nothing even if you find a seemingly non-random 
correlation

• But without a valid and believable regression 
analysis any believable fantasy will remain just 
that: a fantasy (assuming you cannot find other 
valid empirical verification)

Fall 2009 © Erling Berge 2009 8

Goals for the class
• The goal is that each of you shall be able to read 

critically research articles discussing quantitative 
data. This means
– You are to know the pitfalls 

• You are to learn how to perform straightforward 
analyses of co-variation in ”quantitative” and 
”qualitative” data (nominal scale data in 
regression anlysis), and in particular: 
– Also here you have to demonstrate that you know the 

pitfalls 
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Required reading

• Hamilton, Lawrence C. 1992. Regression with
graphics. Belmont: Duxbury. Ch 1-8

• Hamilton, Lawrence C. 2008. A Low-Tech 
Guide to Causal Modelling.  
http://pubpages.unh.edu/~lch/causal2.pdf

• Allison, Paul D. 2002. Missing Data. Sage 
University Paper: QASS 136. London: Sage.
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This lecture is basically repeating what 
you are assumed to know

• Variable distributions
– Ringdal Ch 12 p251-270

– Hamilton Ch 1 p1-23

• Bivariat regression
– Ringdal Ch 17-18 p361-387

– Hamilton Ch 2 p29-59
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Some basic concepts

– Cause

– Model

– Population

– Sample

– Variable: level of measurement

– Variable: measure of centralization

– Variable: measure of dispersion
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Data analysis

• Descriptive use of data
– Developing classifications

• Analytical use of data
– Describe phenomena that cannot be observed

directly (inference)‏

– Causal links between directly eller indirectly
observable phenomena (theory or model
development)‏
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Causal analysis:
from co-variation to causal connection

• From colloquial speach to theory
– Fantasy and intuition, established science tradition

• From theory to model
– Operationalisation

• From observation to generalisation
– Causal analysis
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THREE BASIC DIVISIONS

Observed Real interest
THEORY/ MODEL - REALITY
SAMPLE - POPULATION
CO-VARIATION - CAUSE

On the one hand we have what we are able to 
observe and record, on the other hand, we have 
what we would like to discuss and know more 
about
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Basic sources of error
• Errors in theory / model

– Model specification: valid tests require a correct (true) 
model

• Errors in the sample 
– Selection bias

• Measurement problems
– Missing cases and measurement errors

– Validity og reliability

• Multiple comparisons
– Conclusions are valid only for the sample
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From population to sample

• POPULATION (all units)

Simple random sampling

• SAMPLE (selected units)
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Unit and variable 

• A unit, as a carrier of data, will be contextually
defined
– SUPER - UNIT: e.g. the local community
– UNIT: e.g. household
– SUB - UNIT: e.g. person

• Variable: empirical concept used to 
characterize units under investigation. Each
unit is characterized by being given a 
variable value
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Data matrix and level of measurement

• Matrix defined by Units * Variables
– A table presenting the characteristics of all 

investigated units ordered so that all variable values
are listed in the same sequence for all units

• Level of measurement for a variable
– Nominal scale *classification

– Ordinal scale *classification and rank

– Interval scale *classification, rank and distance

– Ratio scale *classification, rank, distance and absolute zero
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Variable analysis

• Description
– Central tendency and dispersion

– Form of distribution

– Frequency distributions and histograms

• Comparing distributions
– Quantile plots

– Box plots 
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VARIABLE: central tendency

• Mean
sum of all values of the variable for all 
units divided by the number of units

• MEDIAN 
The variable value in an ordered
distribution that has half the units on each
side

• MODUS 
The typical value. The value in a 
distribution that has the highest fequency

1

1 n

i
i

X X
n 

 
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VARIABLE: measure of dispersion I

• MODAL PERCENTAGE
• The percentage of units with value like the mode
• RANGE OF VARIATION
• The difference between highest and lowest value

in an ordered distribution
• QUARTILE DIFFERENCE
• Range of variation of the 50% of units closest to 

the median (Q3-Q1)‏
• MAD - Median Absolute Deviation
• Median of the absolute value of the difference

between median and observed value:  
– MAD(xi) = median |xi - median(xi)|
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VARIABLE: measure of dispersion II

• STANDARD DEVIATION
• Square root of mean squared deviation from the mean

– sy = √ [(i(Yi - Ỹ)2)/(n – 1)] 

• MEAN DEVIATION
• Mean of the absolute value of the deviation from the mean

• VARIANCE
• Standard deviation squared: 

– sy
2 = (i(Yi - Ỹ)2)/(n – 1) 

(ps: here Ỹ is the mean of Y) 
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Variable: form of distribution I

• Symmetrical distributions

• Skewed distributions
– ”Heavy” and ”Light” tails

• Normal distributions
– Are not ”normal”

– Are unambiguously determined by mean and 
variance (  og  ‏(
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Skewed distributions

• Positively skewed has Ỹ > Md

• Negatively skewed has Ỹ < Md

• Symmetric distributions has Ỹ ≈ Md

• Ps: Ỹ = mean of Y
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Symmetric distributions

• Median and IQR are resistent against the impact of
extreme values

• Mean and standard deviation are not
• In the normal distribution (ND) sy ≈ IQR/1.35

• If we in a symmetric distribution find
– sy > IQR/1.35 then the tails are heavier than in the ND

– sy < IQR/1.35 then the tails are lighter than in the ND

– sy ≈ IQR/1.35 then the tails are about similar to the ND
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Squaring

Third root

Symmetric

Transformasjon

Right skewed

Left skewed
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Variable: analyzing distributions I

• Boxplot
– The box is constructed based on the quartile

values Q1 og Q3 . Observations within < Q1, Q3> 
are in the box-

– Adjacent large values are defined as those outside
the box but inside Q3 + 1.5*IQR or Q1 - 1.5*IQR 

– Outliers (seriously extreme values) are those
outside of Q3 + 1.5*IQR or Q1 - 1.5*IQR  
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Variables: analyzing distributions II

• Quantiles is a generalisation of quartiles and 
percentiles

• Quantile values are variable values that
correspond to particular fractions of the
total sample or observed data, e.g.
– Median is 0.5 quantile (or 50% percentile)‏
– Lower quartile is 0.25 quantile
– 10% percentile is 0.1 quantile …
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Variables: analyzing distributions III

• Quantile plots
– Quantile values against value of variable

• The Lorentz curve is a special case of this (it gives
us the Gini-index)‏

• Quantile-Normal plot
– Plot of quantil values on one vairable against

quantil values of Normal distribution with the
same mean and standard deviation
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Example: Randaberg 1985

• Questionnaire: (the number of decare land 
you own / 10 da = 1 ha)

Q:  ANTALL DEKAR GRUNN DU 
eier:_________

(Number of decar you own: ____)
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38279.311Std. Deviation

21885.17Mean

99900Maximum
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Valid N (listwise)‏
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XAreaOwned
(NUMBER OF DEKARE LAND OWNED) 

4201.54943Std. Deviation

3334.4104Mean

25000.00Maximum

.00Minimum

307307N

Valid N (listwise)‏XAreaOwned

Fall 2009 © Erling Berge 2009 36

.277Std. Error

2.194StatisticKurtosis

.139Std. Error

1.352StatisticSkewness

17653017.596StatisticVariance

4201.54943StatisticStd. Deviation

239.79509Std. Error

3334.4104StatisticMean

1023664.00StatisticSum

25000.00StatisticMaximum

.00StatisticMinimum

25000.00StatisticRange

307307StatisticN

Valid N (listwise)‏XAreaOwned



Ref.: http://www.svt.ntnu.no/iss/Erling.Berge/ Fall 2009

© Erling Berge 2009 19

Fall 2009 © Erling Berge 2009 37

0,00 5000,00 10000,00 15000,00 20000,00 25000,00

XAreaOwned

0

50

100

150

200

Fr
eq

ue
nc

y

Mean = 3334,4104
Std. Dev. = 4201,54943
N = 307

Fall 2009 © Erling Berge 2009 38

XAreaOwned

0,00

5000,00

10000,00

15000,00

20000,00

25000,00

344
329

366

346
321

287



Ref.: http://www.svt.ntnu.no/iss/Erling.Berge/ Fall 2009

© Erling Berge 2009 20

Fall 2009 © Erling Berge 2009 39

-10 000 0 10 000 20 000

Observed Value

-10 000

-5 000

0

5 000

10 000

15 000

20 000

E
xp

ec
te

d
 N

or
m

al
 V

al
u

e

Normal Q-Q Plot of XAreaOwned

NB 

Figures
from SPSS 
are mirrors
of figures
in 
Hamilton

Fall 2009 © Erling Berge 2009 40

-3 -2 -1 0 1 2 3

Standardized Observed Value

-3

-2

-1

0

1

2

3

Ex
pe

ct
ed

 N
or

m
al

 V
al

ue

Normal Q-Q Plot of NormalNullEin



Ref.: http://www.svt.ntnu.no/iss/Erling.Berge/ Fall 2009

© Erling Berge 2009 21

Fall 2009 © Erling Berge 2009 41

Questionnaire:

• Hvor viktig er det at myndighetene kontrollerer og 
regulerer bruken av arealer gjennom for eksempel
kontroll av

• av tomtetildelinger (kommunal formidl.)
1 2 3 4 5 6 7 8

• avkjørsler fra hus til vei
1 2 3 4 5 6 7 8

• kjøp og salg av landbrukseiendommer
1 2 3 4 5 6 7 8
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Importance of public control of sales of agric. estates

100.0100.0380Total

100.01.31.359

98.73.23.2128

95.522.422.4857

73.213.213.2506

60.011.811.8455

48.215.515.5594

32.68.98.9343

23.710.510.5402

13.213.213.2501Valid

Cumulative PercentValid PercentPercentFrequency
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Ved utfylling: sett ring rundt et tall som synes å gi passelig 
uttrykk for viktigheten når 1 betyr svært lite viktig og 7 
særdeles viktig, eller sett et kryss inne i parantesene ( ) som 
står bak svaret du velger
På noen spørsmål kan du krysse av flere svar

87654321Kodeverdi

vet ikkelykkes godt/
svært viktig

lykkes dårlig/
lite viktig

Questionnaire: coding

Dei som ikkje kryssar av noko svar vert koda 9 (ie. missing)
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I. OF P. CNTR. OF SALES OF AGRIC. EST.

100.0380Total

4.517Total

1.359

3.2128Missing

100.095.5363Total

100.023.422.4857

76.613.813.2506

62.812.411.8455

50.416.315.5594

34.29.48.9343

24.811.010.5402

13.813.813.2501Valid

Cumulative PercentValid PercentPercentFrequency
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.255.250Std. Error

-1.267-1.148StatisticKurtosis

.128.125Std. Error

-.234-.171StatisticSkewness

4.4284.897StatisticVariance

2.104352.213StatisticStd. Deviation

.11045.114Std. Error

4.37474.55StatisticMean

1588.001729StatisticSum

7.009StatisticMaximum

1.001StatisticMinimum

6.008StatisticRange

363380StatisticN

YControlSalesAgricEstate
Valid N (listwise)‏

I. OF P. CNTR. OF 
SALES OF AGRIC. 

EST.
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Distributions with or without 
missing?

• What difference do the 17 missing 
observations make in the 
– Quantile-Normal plot?

– Box plot?
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Data collection and data quality

• Questions – techniques for asking questions will
not be discusssed

• Sample
– From sampling to final data matrix: selection of cases, 

refusing to participate, and missing answers on
questions

• What is important for the quality of the data?
– A possible causal link between missing observations

and the topic studied

• What can be done if data are faulty?
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Writing up a model
• Defining the elements of the model

– Variables, error term, population, and sample

• Defining the relations among the elements of the model
– Sampling procedure, time sequence of the events and 

observations, the functions that links the elements into an 
equation

• Specification of the assumptions stipulated to be true in 
order to use a particular method of estimation
– Relationship to substance theory (specification requirement)
– Distributional characteristics of the error term

Fall 2009 © Erling Berge 2009 54

Elements of a model

• Population

• Sample 

• Variables

• Error terms
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Relations among elements of a model

• Sampling: biased sample?

• Time sequence of events and observations
(important to aid ausal modelling)

• Co-variation (genuine vs spurious co-variation)
– Conclusions about causal impacts require genuine 

co-variation

• Equations and functions
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Bivariat Regresjon: 
Modelling a population

• Yi = 0 + 1 x1i + i

• i=1,...,n n = # cases in the population

• Y and X must be defined unambiguously, and 
Y must be interval scale (or ratio scale) in 
ordinary regression (OLS regression) 
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Bivariat Regresjon:
Modelling a sample

• Yi = b0 + b1 x1i + ei

• i=1,...,n n = # cases in the sample

• ei is usually called the residual (mot the error
term as in the population model)

• Y and X must be defined unambiguously, and 
Y must be interval scale (or ratio scale) in 
ordinary regression (OLS regression)
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An example of a bad regression

• The example following contains a series of
errors. If you present such a regression in 
your term paper you will fail

• Your task is to identify the errors as quickly
as possible and then never do the same

• Clue:  look again at the distributions of the
variables above
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Importance of public control of sales of agric. 
Estates

Model Summary

2.213.000.002.047(a)1‏

Std. Error of the Estimate
Adjusted R 

SquareR SquareRModel

a  Predictors: (Constant), NUMBER OF DEKAR LAND OWNED
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Importance of public control of sales of agric. Estates

ANOVA(b)‏

3791856.050Total

4.8993781851.905Residual

.358(a)8464.14514.145.‏Regression1

Sig.FMean Squaredf
Sum of
SquaresModel

a  Predictors: (Constant), NUMBER OF DEKAR LAND OWNED
b  Dependent Variable: I. OF P. CNTR. OF SALES OF AGRIC. EST.
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Importance of public control of sales of agric. Estates

Coefficients(a)‏

.358-.920-.047.000.000
NUMBER OF 
DEKAR LAND 
OWNED

.00035.233.1314.610(Constant)1‏

BetaStd. ErrorB

Sig.t
Standardized
Coefficients

Unstandardized
CoefficientsModel

a  Dependent Variable: I. OF P. CNTR. OF SALES OF AGRIC. EST.
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Scatterplot with regression line
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Assumptions needed for the use of
OLS to estimate a regression model

OLS: ordinary least squares (minste kvadrat metoden)

Requirements for OLS estimation of a regression
model can shortly be summed up as 

• We assume that the linear model is correct (true) with
independent, and identical normally distributed error
terms ( ”normal i.i.d. errors”)
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Estimation method: OLS

• Model Yi = b0 + b1 x1i + ei

The observed error (the residual) is

• ei = (Yi - b0 - b1 x1i) 
Squared and summed residual

• i(ei)2 = i (Yi - b0 - b1 x1i)2

Find b0 and b1 that minimizes the squared sum
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Relationship sample - population ‏(1)
• A new mathematical operator: E[¤] meaning the expected value of

[¤] where ¤ stands for some expression containig at least one 
variable or unknown parameter, e.g. 

• E[Yi ]  = E[b0 + b1 x1i + ei ] 

= 0 + 1 x1i

• Note in particular that in our model
– E[b0]   = 0 ; 

– E[b1] = 1 ; 

– E[ei ] = i
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Relationship sample – population ‏(2)
• Relationship sample - population is determined by the

characteristics that the error term has been given  in the
sampling and observation procedure

• In a simple random sample with complete observation

E[ i ]for all i, and

var [i] = 2 for all i 

NB: var(¤) is a new mathematical operator meaning
”the procedure that will find the variance of some
algebraic expression ”¤”
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Complete observation

• Make it possible to make a completely specified
model. This means that all variables that
causally affects the phenomenon we study (Y) 
have been observed, and are included in the
model equation

• This is practically impossible. Therefore the
error term will include also unobserved factors
affecting (Y) 
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Testing hypotheses I

Our method gives the
correct answerwith

probability  (= 
power of the test)

Error of type I

The test level  is the
probability of errors
of type I

We conclude that
H0 is untrue

Error of type II
(probability 1 – )‏

Our method gives the
correct answer with
probability 1 – 

We conclude that
H0 is true

In reality H0 is 
untrue

In reality H0 is 
true
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Testing hypotheses II
• A test is always constructed based on the

assumption that H0 is true
• The construction leads to a 

– Test statistic

• The test statistic is constructed so that is has 
a known probability distribution, usually
called a 
– sampling distribution
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T-test and F-test

 Sums of squares
 TSS = ESS + RSS

 RSS = i(ei)2 = i(Yi - Ŷi)2 distance observed- estimated value

 ESS = i(Ŷi - Ỹ)2 distance estimated value - mean

 TSS = i(Yi - Ỹ)2 distance observed value – mean

 Test statistic
 t = (b - )/ SEb SE = standard error

 F = [ESS/(K-1)]/[RSS/(n-K)] K = number of model parameters
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The p-value of a test

• The p-value of a test gives the estimated
probability for observing the values we have in 
our sample or values that are even more in accord
with a conclusion that H0 is untrue; assuming that
our sample is a simple random sample from the
populasjon where H0 in reality is true 

• Very low p-values suggest that we cannot believe
that H0 is true 
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Confidence interval for 

• Pick a t- value from the table of the t-
distribution with n-K degrees of freedom so that
the interval
< b – t(SEb) , b + t(SEb) >
in a two-tailed test gives a probability of  for 
committing error of type I

• This means that b – t(SEb) ≤  ≤ b + t(SEb) 
with probability 1 – 
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Coefficient of determination 
Coefficient of determination:

• R2 = ESS/TSS =
– Tells us how large a fraction of the variation around 

the mean we can ”explain by” (attribute to) the 
variables included in the regression (Ŷi = predicted y)‏

• In bi-variate regression the coefficient of 
determination equals the coefficient of correlation: 
ryu

2 = syu /sysu

• Co-variance: syu = 

2 2

1 1

ˆ( ) ( )/
n n

i i
i i

Y Y Y Y
 

  

 
1

1
( )

1

n

i i
i

Y Y U U
n 

 
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Detecting problems in a regression

• Take a second look at the 
example presented above where 
– Y = IMPORTANCE OF PUBLIC CONTROL 

OF SALES OF AGRICULURAL ESTATES 
– X = NUMBER OF DEKAR LAND OWNED  

–Yi = b0 + b1 x1i + ei

What was the problem in this example?
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What is wrong in this scatterplot with regression line?
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In general: what can possibly cause problems?

• Ommitted variables

• Non-linear relationships

• Non-constant error term 
(heteroskedastisitet)

• Correlation among error terms 
(autocorrelation)

• Non-normal error terms

• Influential cases
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Non-normal errors: 

• Regression DO NOT need assumptions about the
distribution of variables

• But to test hypotheses about the parameters we need to 
assume thet the error terms are normally distributed
with the same mean and variance

• If the model is correct (true) and n (number of cases) is 
large the central limit theorem demonstrates that the error
terms approach the normal distribution

• But usually a model will be erroneously or 
incompletely specified. Hence we need to inspect and 
test residuals (observed error term) to see if they actually
are normally distributed
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Residual analysis
• This is the most important starting point for 

diagnosing a regression analysis
Useful tools:
• Scatterplot
• Plot of residual against predicted value
• Histogram 
• Boxplot
• Symmetry plot
• Quantil-normal plot
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What went wrong? 
(1) residual-predicted value plot



Ref.: http://www.svt.ntnu.no/iss/Erling.Berge/ Fall 2009

© Erling Berge 2009 41

Fall 2009 © Erling Berge 2009 81

-8 -6 -4 -2 0 2 4 6

Observed Value

-8

-6

-4

-2

0

2

4

6

Ex
pe

cte
d N

or
m

al 
Va

lu
e

Normal Q-Q Plot of Unstandardized Residual

What went wrong? 
(1) normal-quantile plot
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Power transformations
May solve problems related to

• Curvilinearity in the model

• Outliers 

• Influential cases

• Non-constant variance of the error term 
(heteroskedasticity)

• Non-normal error term 
NB: Power transformations are used to solve a problem. If you 

do not have a problem do not solve it. 
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Power transformations (see H:17-22)

Y* : read
“transformed Y”

(transforming Y to Y*)

• Y* = Yq q>0

• Y* = ln[Y] q=0

• Y* = - [Yq ] q<0

Inverse 
transformation

(transforming Y* to Y)

• Y = [Y*]1/q q>0

• Y = exp[Y*] q=0

• Y = [- Y* ]1/qq<0 
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Power transformations: consequences

• X* = Xq

– q  > 1   increases the weight of the right hand tail relative to the left 
hand tail 

– q  = 1   produces identity

– q  < 1   redices the weight of the right hand tail relative to the left 
hand tail 

• If Y* = ln(Y) the regression coefficient of an interval scale 
variable X can be interpreted as % change in Y per unit 
change in X

E.g. if       ln(Y)= b0 + b1 x + e 

b1 can be interpreted as % change in Y pr unit change in X
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Power transformed
X = NUMBER OF DEKAR LAND OWNED

0,00 50,00 100,00 150,00

SQRTAREAOWNED

0

20

40

60

80

100

Fr
eq

ue
nc

y

Mean = 43,1285
Std. Dev. = 38,4599
N = 307

0,00 2,00 4,00 6,00 8,00 10,00

LNAREAOWNED

0

10

20

30

40

50

60

70

Fr
eq

ue
nc

y

Mean = 6,3855
Std. Dev. = 2,37376
N = 307

SQRT=square root of areaowned – LN= natural logarithm of (areaowned+1)
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Power transformed
X = NUMBER OF DEKAR LAND OWNED

Point3power = 0,3 power of areaowned
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Does power transformation help?

0.3 power-transformation gives lighter tails and no outliers
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Box plot of the residual shows
approximate symmetry and no outliers

Unstandardized Residual
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Curviliear regression

• The example above used the variable  
”Point3powerAreaowned”, or 0.3 power of number of
dekar land owned:

• Point3powerAreaowned = (NUMBER OF DEKAR LAND OWNED)0.3

The model estimated is thus

yi = b0 + b1 (xi ) + ei

yi = b0 + b1 (Point3powerAreaownedi ) + ei

ŷi = 4.524 + 0.010*(NUMBER OF DEKAR LAND OWNEDi)
0.3
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Use of power
transformed
variables means
that the
regression is 
curvilinear
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Summary
• In bi-variate regression the OLS method finds the ”best” LINE or 

CURVE in a two dimensional scatter plot

• Scatter-plot and analysis of residuals are tools for diagnosing 
problems in the regression

• Transformations are a general tool helping to mitigate several types 
of problems, such as 
– Curvilinearity

– Heteroscedasticity

– Non-normal distributions of residuals

– Case with too high influence

• Regression with transformed variables are always curvilinear. 
Results can most easily be interpreted by means of graphs
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SPSS printout vs the book (see p16)
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Normal Q-Q Plot of Unstandardized Residual

Fall 2009 © Erling Berge 2009 94

Reading printout from SPSS (1)

3075.318348.5032Point3powerAreaowned

3072.1854.61
I. OF P. CNTR. OF SALES OF 
AGRIC. EST.

N2Std. Deviation1MeanDescriptive Statistics

.6703051.182.0012.188-.003.001.024(a)1

Sig. F 
Changedf2df1F Change

R Square 
Change

Change Statistics

Std. Error 
of the 

Estimate5
Adjusted
R Square4

R 
Squa
re3R

M
o
d
el

a  Predictors: (Constant), Point3powerAreaowned
b  Dependent Variable: I. OF P. CNTR. OF SALES OF AGRIC. EST. 
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Footnotes to the table above (1)
1. Standard deviation of the mean

2. Number of cases used in the analysis

3. Coefficient of determination

4. The adjusted coefficient of determination (see
Hamilton page 41)

5. Standard deviation of the residual

se = SQRT ( RSS/(n-K)), 

where SQRT (*) = square root of (*)
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Reading printout from SPSS (2)

3061461.094Total

4.7883051460.224
Residual

.670(a)
.182.8701.870

Regression1

Sig.2F1

Mean
Squaredf

Sum 
of Squares3Model

•Sums of squares:   TSS = ESS + RSS

•RSS = i(ei)2 = i(Yi - Ŷi)2 : sum of squared (distance observed – estimated value)

•Mean Square = RSS / df For RSS it is known that df=n-K

K equals number of parameters estimated in the model (b0 og b1)

Here we have n=307 and K=2, hence Df = 305
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Footnotes to the table above (2)
1. F-statistic for the null hypothesis beta1 = 0  (see 

Hamilton p45)
2. p-value of the F-statistic: the probability of finding a 

F-value this large or  larger assuming that the null  
hypothesis is correct

3. Sums of squares
1. TSS = ESS + RSS
2. RSS = i(ei)2 = i(Yi - Ŷi)2 distance observed value – estimated

value
3. ESS = i(Ŷi - Ỹ)2 distance estimated value – mean 
4. TSS = i(Yi - Ỹ)2 distance observed value – mean 
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Reading printout from SPSS (3)

.056-.036.670.426.024.024.010

Point3-
powerA

rea-
owned

4.9884.060.00019.187.2364.524
(Constant)1
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Footnotes to the table above (3)
1. Estimates of the regression coefficients b0 og b1

2. Standard error of the estimates of b0 og b1

3. Standardized regression coefficients: b1
st = 

b1*(sx/sy)  see Hamilton pp38-40

4. t-statistic for the null hypothesis beta1 = 0  (see 
Hamilton p44)

5. p-value of the t-statistic: the probability of 
finding a t-value this large or larger assuming 
that the null hypothesis is correct
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SOS3003 
Applied data analysis for social 

science 
Lecture notes on 
Hamilton Ch 3 p65-101

Basics of multiple regression 

Erling Berge
Department of sociology and political science

NTNU
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Recall: 
Bivariate regression: Modelling a sample

• Yi = b0 + b1 x1i + ei

– i=1,...,n n = # cases in the sample

• ei is usually called the residual (mot the error term as in the 
population model)

• Y and X must be defined unambiguously, and Y must be interval 
scale (or ratio scale) in ordinary regression (OLS regression)
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Recall: 
Bivariate regression: Modelling a population

• Yi = 0 + 1 x1i + i

• i=1,...,n n = # cases in the population 

• i is the error term for case no i

• Y and X must be defined unambiguously, and 
Y must be interval scale (or ratio scale) in 
ordinary regression (OLS regression) 



Ref.: http://www.svt.ntnu.no/iss/Erling.Berge/ Fall 2009

© Erling Berge 2009 52

Fall 2009 © Erling Berge 2009 103

Summary on bivariate regression
• In bi-variate regression the OLS method finds the ”best” LINE or 

CURVE in a two dimensional scatter plot

• Scatter-plot and analysis of residuals are tools for diagnosing 
problems in the regression

• Transformations are a general tool helping to mitigate several types 
of problems, such as 
– Curvilinearity

– Heteroscedasticity

– Non-normal distributions of residuals

– Case with too high influence

• Regression with transformed variables are always curvilinear. 
Results can most easily be interpreted by means of graphs
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Multiple regression: model (1)
• The goal of multiple regression is to find the net 

impact of one variable controlled for the impact 
of all other variables

• Let K= number of parameters in the model (this means 
that K-1 is the number of variables)

• Then the population model can be written
• yi = 0 + 1 xi1 + 2 xi2 + 3 xi3 +...+ K-1 xi,K-1 + i
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Multiple regression: model (2)
• This can also be written

yi = E[yi] + i , 

this means that 

• E[yi] = 0 + 1 xi1 + 2 xi2 + 3 xi3 +...+ K-1 xi,K-1

E[yi] is read as “the expected value of yi”
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Multiple regression: model (3)
• We will find the OLS estimates of the model 

parameters as the b-values in

ŷi = b0 + b1 xi1 + b2 xi2 + b3 xi3 +...+ bK-1 xi,K-1 

(ŷi is read as ”estimated” or ”predicted” value of yi )

That minimizes the squared sum of the residuals  
2 2

1 1

( )
n n

i i
i i

RSS Y Y e
 

   
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Estimation methods
• OLS: parameters are found by minimizing RSS 

• But this is not the only method for finding suitable b-
values. Two alternatives are:
– WLS: Weighted least squates

– ML: maximum likelihood
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More on testing hypotheses
• We can draw many samples from a population
• In every new sample we can estimate new values

(a new b-value) of the same regression parameter 
()

• If we make a histogram of the many estimates of
e.g. b1 we will see that b1 has a distribution. This 
distribution is called the sampling distribution of
1

• Different types of parameters have different types 
of sampling distributions

• Regression parameters (-as) have a t-distribution
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On partial effects (1)
• Example with 2 variables

• If we estimate a model

yi = b0 + b1 xi1 + b2 xi2 + ei

it will in principle involve 3 different correlations:
• Between y and x1

• Between y and x2 

• Between x1 and x2 
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On partial effects (2)
• This might have been represented by 3 different bivariate regressions

where the third variable was kept constant

(1) y = ayIx1 + byIx1x1 + eyIx1 x2 constant

(2) y = ayIx2 + byIx2x2 + eyIx2 x1 constant

(3) x1= ax1Ix2 + bx1Ix2x2 + ex1Ix2 y  constant

the index ”yIx1” is read ”from the regression of y on x1”

• Equations (2) and (3) can be rewritten as:
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On partial effects (3)

(2) eyIx2 = y  - (ayIx2 + byIx2x2 ) 

(3) ex1Ix2 = x1 - (ax1Ix2 + bx1Ix2x2 )

We may interprete this as a removal of the effect of x2 from 
y and from x1

We also see that eyIx2 and ex1Ix2 become new

variables where the effect of x2 has been removed
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On partial effects (4)
• If we based on this make a new regression

êyIx2 =  a + b ex1Ix2

we find that
a = 0 

b = b1 from the regression

yi = b0 + b1 xi1 + b2 xi2 + ei

• b1 is in other words the effect of x1 on y after
we have removed the effect of x2
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Experiments and partial effects
• Experiments investigate the causal connection 

between two variables controlled for all other causal 
impacts

• Multiple regression is a kind of half-way replication 
of experiments – the next best solution – and is a 
close relative of quasi-experimental research designs
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Partial effects
A leverage plot for y and xk is a plot where

• y-axis is the residual from the regression of y on all 
x-variables except xk , and 

• x-axis is the residual from regression of xk on all the
other x-variables

The regression line in such a plot will always go
through y=0 and will ahve a slope coefficient equal
to bk
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An example with 2 independent variables

.00023.679.025.593Summer 1980 Water Use

.0006.0723.38320.545Income in Thousands

.0312.16094.361203.822(Constant)

Sig.t Std. ErrorB
Table 3.1 Dependent: 
Summer 1981 Water Use

.00010.2214.65247.549Income in Thousands

.0009.740123.3251201.124(Constant)

Sig. t Std. ErrorB
Table 2.2 Dependent: 
Summer 1981 Water Use

From the table 2.2 (p46) and 3.1 (p68) in Hamilton. In the tables in the book the constant is on 
the last line. SPSS put it on the first line. 
Question: What does it mean that the coefficient of income declines when we add a new 
variable?
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On the addition of new variables
• It is not common that existing theory will give precise prescriptions for 

what variables to include in a model. Usually there is an element of trial 
and error in developing a model

• When new variables are added to a model several things happen
– The explanatory force increase: R2 increase, but will the increase be significant?

– The coefficient of the regression shows the effect on y. Is this effect significantly 
different from 0? 

– If the coefficient is significantly different from 0, is it also so big that it is of 
substantial interest?

– Spurious coefficients can decline. Do the new variable change the interpretation of 
the effect of the other variables?
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Parsimony
• Parsimony is what might be called an aesthetic criterion of 

a good model. We want to explain as much as possible of 
the variation in y by means of as few variables as possible

• The adjusted coefficient of determination, Adjusted R2, is 
based on parsimony in the sense that it takes into 
consideration the complexity of the data relative to the 
complexity of the model by the difference between n and 
K 
(n-K is the degrees of freedom in the residual,  

n = number of observations, K = number of estimated parameters) 
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Irrelevant variable
• Including irrelevant variables

– A variable is irrelevant if the real effect () is 0; or more 
pragmatically, if it si so small that it has no substantive interest 

– Inclusion of an irrelevant variable makes the model 
unnecessarily complex and will have the consequence that 
coefficient estimates on all variables have larger variance 
(coefficients varies more form sample to sample) 

• Including an irrelevant variable is probably the least 
damaging error we can do 
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Relevant variable
• A variable is relevant if 

1. Its real effect () is significantly different from 0, and 

2. Large enough to have substantive interest, and 

3. Is correlated with other included x-variables

• If we exclude a relevant variable all results from our regression will 
be unreliable. The model is unrealistically simple 

• Not including a relevant variable is the most damaging error we can 
do. But consider requirement 2 and 3. This makes it a lot easier to 
avoid this problem.
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Sample specific results?
• Choice of variables is a trade-off among risks. Which risk is 

worse depends on the purpose of the study and the strength of 
relations

• With a test level of 0.05 one may easily find sample specific 
results. In about 5% of all samples a coefficient that show up 
as not significantly different from 0 will in ”reality” be 
different from 0 ( ≠ 0) and vice versa for those we find to be 
significantly different from 0

• The best defence against this is the theoretical argument for 
finding an effect different from 0
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Hamilton (s74) example

Change in number of people, summer 1981 minus summer 1980 xi6

Number of people living in household at time of water shortage 
(summer 1981)

xi5

retirement (coded 1 if household head is retired and 0 otherwise)xi4

Education of household head, in yearsxi3

Preshortage water use, in cubic feet (1980)xi2

Household income, in thousands of dollarsxi1

Postshortage water use (1981)yi
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Table 3.2 (Hamilton p74)

.2321.19880.51996.454Increase in # of People

.0008.64128.725248.197# of People Resident, 1981

.0471.99195.021189.184Head of house retired?

.002-3.16713.220-41.866Education in Years

.00018.671.026.492Summer 1980 Water Use

.0006.0533.46420.967Income in Thousands

.2421.171206.864242.220(Constant)

Sig.tStd. ErrorB
Dependent Variable: 
Summer 1981 Water Use

How do we interprete the coefficient of ”Increase in # of People” ?

What leads to less water use after the crisis?

.031

.277

.058

-.087

.584

.184

Beta
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Standardized coefficients
• Standardized variables (z-scores)

zix = (xi – x )/sx

(means unit of measurement is standad deviation)

• Standardized regression coefficients (beta-weights, or path 
coefficients)
bk

s = bk(sk/sy)  (varies between -1 and +1)

• Predicted standard score of yi (ziy with hat) = 

0.18zi1 + 0.58zi2 – 0.09zi3 + 0.06zi4 + 0.28zi5 + 0.03zi6

_
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t-test
• The difference between the observed coefficient (bk) and the 

unobserved coefficient (k) standardized by the standard deviation 
of the observed coefficient (SEbk

) will usually be very close to zero 
if the observed bk is close to the population value. This means that 
we in the formula 

• t = (bk - k)/ SEbk substitutes H0: k = 0 and find that ”t” is small we 
will believe that the  population value k in reality equals 0 

• How big ”t” has to be before we stop believing that k = 0 we can 
find from knowing the sampling distribution of bk and SEbk
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”t” has a sampling distribution called the t-distribution The t-distribution varies with 
the number of degrees of freedom (n-K) and is listed according to level of 
significance 



Ref.: http://www.svt.ntnu.no/iss/Erling.Berge/ Fall 2009

© Erling Berge 2009 64

Fall 2009 © Erling Berge 2009 127

Confidence interval for 
• Chose a t-value from the table of the t-distribution with n-K degrees 

of freedom

• Then if H0 : k= bk is correct, a two tailed test will have a probability 
of  to reject H0 when H0 in reality is correct (type I error)

• This means that there is a probability of  that k in reality is outside 
the interval

< bk – t(SEbk
) , bk + t(SEbk

) >

• This is equivalent to saying that

bk – t(SEbk
) ≤ k ≤ bk + t(SEbk

)

is correct with probability 1 – 
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F-test: big model against small
RSS{*} = residual sum of squares with index {*} where 
* stands for number of parameters in the model

– Big model: RSS{K} 
– Small model: RSS{K-H} 
– H equals the difference in the number of parameters in the two models 

• Define:

(RSS{K-H} – RSS{K})/H

FH
n-K= --------------------------------- = F[H, n-K]

(RSS{K})/(n-K)

F[H, n-K] will have the sampling distribution called the F-
distribution with H and n-K degrees of freedom
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Example (Hamilton table 3.1 and 3.2)

n - 1 = 4951093238709.677Total

721393.022n - K = 489352761187.618Residual

.000(a)171.076123412920.343K - 1 =     6740477522.059Regression

Sig.FMean SquaredfSum of Squares
Stor model
Tabell 3.2 

4951093238709.677Total

856416.551493422213359.440Residual

.000(a)391.763335512675.1192671025350.237
Regression

(Model) 
(Explained)

Sig.FMean SquaredfSum of Squares
Liten modell
Table 3.1

Test if the big model (7 parameters) is better than the small (3 parameters)
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Notes to the example
• K = number of parameters of the big model (6 variablar pluss

konstant) = 7 

• H = K – [number of parameters in the small model (2 variables plus 
constant)] = 7 – 3 = 4

• RSS{K-H} = 422213359.440

• RSS{K} = 352761187.618

• n = 496 

• n – K = 496 – 7 = 489

• (RSS{K-H} – RSS{K})/H = (422213359.440 - 352761187.618)/4 = 
17363042.9555

• RSS{K)/(n-K) = 352761187.618/489 = 721393.0217
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Testing all parameters in one test
• If the big model has K parameters and we let the small 

model be as small as possible with only 1 parameter (the
constant = the mean) our test will have H=K-1. Inserting
this into our formula we have

ESS/(K-1)     

F{K-1, n-K} = ------------------

RSS/(n-K)

This is the F-value we find in the ANOVA tables from SPSS
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Multicollinearity (1)
• Multicollinearity only involves the x-variables, not y, and is 

about linear relationships between two or more x-variables

• If there is a perfect correlation between 2 explanatory 

variables, e.g. x and w (rxw = 1) the multiple regression 

model breaks down

• The same will happen if there is perfect correlation between 
two groups of x-variables
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Multicollinearity (2)
• Perfect correlation is rarely a practical problem

• But high correlations between different x-variables or 
between groups of x-variables will make estimates of their 
effect unreliable. The regression coefficients will have a 
very large standard deviation and t-tests will practically 
speaking have no interest whatsoever

• F-tests of groups of variables will not be affected by this
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Search strategies
• There are methods for authomatic searches for explanatory 

variables in a large set of data

• The best advice to give on this is to avoid using it

• One problem is that the p-values of the tests from such 
searches are wrong and too ”kind” (the problem of multiple 
comparisons)

• Another problem is that such searches do not work well if 
the variables are highly correlated
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Dummy variables: group differences 

• Dichotomous variables taking the values of 0 or 1 are 
called dummy variables

• In the example in table 3.2 (p74) xi4 is (Head of house 
retired?) a dummy variable

• First put into the equation xi4 = 1 then xi4 = 0 
yi = 242 + 21xi1 + 0.49xi2 - 42xi3 + 189xi4 + 248xi5 + 96xi6 og

• Explain what the two equations tell us
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Interaction

• There is interaction between two variables 
if the effect of one variable changes or 
varies depending on the value of the other 
variable
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Interaction effects in regression (1)
• If we do a non-linear transformation of y all estimated effects 

will implicitly be interaction effects

• Simple additive interaction effects can be included in a linear 
model by means of product terms where two x-variables are 
multiplied 

• ŷi = b0 + b1xi + b2wi + b3xiwi

• Conditional effect plots will be able to illustrate what 
interaction means
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Interaction effects in regression (2)

• An interaction effect involving x and w can 
be included in a regression model by means 
of an auxiliary variable equal to the product 
of the two variables, i.e.

• Auxiliary variable H=x*w 

• yi = b0 + b1*xi + b2*wi + b3*Hi + ei

• yi = b0 + b1*xi + b2*wi + b3*xi *wi + ei
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Example from Hamilton(p85-91)
Let 

• y = natural logarithm of chloride concentration

• x = depth of well (1=deep, 0=shallow)

• w = natural logarithm of distance from road

• xw = interaction term between distance and depth (product 
x*w). Then

• ŷi = b0 + b1xi + b2wi + b3xiwi

First take a look at the simple models without interaction
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Figures 3.3 and 3.4 (Hamilton p85-86)

.145-1.479-.205.477-.706x= BEDROCK OR SHALLOW WELL?

.0008.801.4293.775(Constant)

Sig.tBetaStd. ErrorB
Dependent Variable:
lnChlorideConcentra

.154-1.449-.202.481-.697x= BEDROCK OR SHALLOW WELL?

.615-.506-.071.180-.091w= lnDistanceFromRoad

.0004.381.9614.210(Constant)

Sig.tBetaStd. ErrorB
Dependent Variable:
lnChlorideConcentra

Figure 3.3 is based on

Figure 3.4 is based on
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Figure 3.3
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Figures 3.5 and 3.6 (Hamilton p89-91)

.417-.819-.128.099-.081x*w= lnDroadDeep

.886-.144-.022.202-.029w= lnDistanceFromRoad

.0004.050.9053.666(Constant)

Sig.tBetaStd. ErrorBDependent Variable: lnChlorideConcentra

.0052.9421.979.4271.256x*w= lnDroadDeep

.002-3.207-1.9482.095-6.717x= BEDROCK OR SHALLOW WELL?

.006-2.886-.862.384-1.109w= lnDistanceFromRoad

.0004.8281.8799.073(Constant)

Sig. tBetaStd. ErrorB
Also see Table 3.4 in Hamilton p90
Dependent Variable: lnChlorideConcentra

Figure 3.6 is based on

Figure 3.5 is based on
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X=0
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Multicollinearity
• Taking all three variables, x, w, and x*w will 

introduce an element of multicollinearity. This 
means that we cannot trust tests of single 
coefficients

• But as shown in the previous example one can not 
drop any one of the variables without dropping a 
relevant variable

• F-test of e.g. w and z*w simultaneously 
circumvents the test problem, and with some 
experimentation with different models one may 
see if excluding w or x*w changes the relations 
substantially
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Nominal scale variable
• Can be included in regression models by the use of new 

auxiliary variables: one for each category of the nominal 
scale variable. J categories implies H(j), j=1,…,J new 
auxiliary variables

• If the dependent variable is interval scale and the the only 
independent variable is nominal scale analysis of variance 
(ANOVA) is the most common approach to analysis

• By introducing auxiliary variables the same type of analysis 
can be done in a regression model
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Analysis of variance - ANOVA
• Analysing an interval scale dependent variable with 

one or more nominal scale independent variables, 
often called factors
– One way ANOVA uses one nominal scale variable

– Two way ANOVA uses two nominal scale variable

– And so on …

• Tests of differences between groups are based on an 
evaluation of whether the variation within a group 
(defined by the ”factors”) is large compared to the 
variation between groups
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Nominal scale variables in regression (1)

• If the nominal scale has J categories a maximum 
of J-1 auxiliary variables can enter the regression

If H(j), j=1, ... , J-1 are included H(J) have to be 
excluded

• The excluded auxiliary variable is called the 
reference category and is the most important 
category in the interpretation of the results from 
the regression
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Nominal scale variables in regression (2)

Dummy coding of a nominal scale variable
• The auxiliary variable H(j) is coded 1 for a 

person if the person belongs to category j on the 
nominal scale variable, it is coded 0 if theperson
do not belong to category j

• NB: The mean of a dummy coded variable is the 
proportion in the sample with value 1 (i.e. that 
belongs in the category)
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Nominal scale variables in regression (3)

The reference category

(the excluded auxiliary variable)

• The chosen reference category ought to be 
large and clearly defined 

• The estimated effect of an included 
auxiliary variable measures the effect of 
being in the included category relative to 
being in the reference category 
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Nominal scale variables in regression (4)

• This means that the regression parameter 
for an included dummy coded auxiliary 
variable tells us about additions or 
subtractions from the expected Y-value  a 
person gets by being in this category rather 
than in the reference category
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Nominal scale variables in regression (5)

Testing I

• Testing if a regression coefficient for an 
included auxiliary variable equals 0 answers 
the question whether the persons in this 
group have a mean Y value different from 
the mean value of the persons in the 
reference category
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Nominal scale variables in regression (6)

Testing II

• Testing whether a Nominal scale variable contributes 
significantly to a regression model have to be done by 
testing if all auxiliary variables in sum contributes 
significantly to the regression 

• For this we use the F-test, applying  formula 3.28 in 
Hamilton (p80)
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Nominal scale variables in regression (7)

Interaction

• When dummy coded nominal scale 
variables are entered into an interaction all 
included auxiliary variables have to be 
multiplied with the variable suspected of 
interacting with it
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On terminology (1)
• Dummy coding of nominal scale variables are 

called different names in different textbooks. For 
example it is

1. Dummy coding in Hamilton, Hardy, and Weisberg

2. Indicator coding in Menard (and also Weisberg)

3. Reference coding or partial method in 
Hosmer&Lemeshow
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On terminology (2)

• To reproduce results from the analysis of variance 
(ANOVA) by means of regression techniques 
Hamilton introduces a coding of the auxiliary 
variables he calls effect coding. Other authors call it 
differently: 

– It is called effect coding by Hardy
– It is called deviance coding by Menard
– It is called the marginal method or deviance method by 

Hosmer&Lemeshow

• To highlight particular group comparisons Hardy 
(Ch5) introduces a coding scheme called contrast 
coding 
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Ordinal scale variables
• Can be included as an interval scale if the 

unobserved theoretical dimension is continuous and 
distance mesures seems resonable

• Also it may be used directly as dependent variable if 
the program allows ordinal dependent variables
– In that case parameters are estimated for every level 

above the lowest as cumulative effects relative to the 
lowest level 
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Nominal scale variables 

100.0100.0380Total

100.052.652.6200
O. PEOPLE

47.434.734.7132
FARMER

12.612.612.648
POL

Cumulative 
Percent

Valid 
PercentPercentFrequency

TYPE OF 
GROUP
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Example of dummy coding

Reference 
category

1002003Other People

0101322Farmers

001481Politicians

H(3)=
People

H(2)=
Farmer

H(1)=
Pol

NCodeType of group

H (*)variablesAuxiliar
y

Nominal scale

A variable with 3 categories leads to 2 dummy coded  variables 
in a regression with the third used as reference
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Example of effect coding

Reference 
category

-1-1 2003Other People

101322Farmers

01481Politicians

H(2)=
Farmer

H(1)=
Pol

NCodeType of group

Auxiliary
variable

Nominal scala

In effect coding the reference category is coded -1. Effect coding 
make if possible to duplicate all F-tests of ordinary ANOVA 
analyses. 
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Contrast coding

• Is used to present just those comparisons that are 
of the highest theoretical interest

• Contrast coding requires
– That with J categories there have to be J-1 contrasts
– The values of the codes on each auxiliary variable 

have to sum to 0
– The values of the codes on any two auxiliary variables 

have to be orthogonal (their vector product has to be 
0)
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Use of dummy coded variables(1)

.0801.758.096.240.421Farmer

.0072.711.147.337.914Pol

.00026.991.1524.106(Constant)

Sig.tBeta
Std. 

ErrorB
Dependent Variable: 
I. of political contr. of sales of agric. est.

• The constant shows the mean of the dependent variable for those who 
belong to the reference category

• The mean of the dependent variable for politicians are 0.91 opinion 
score points above the mean of the reference category

• The mean on the dependent variable for farmers are 0.42 opinion score 
points above the mean of the reference category
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Use of dummy coded variables (2)

.362-.913.338-.309Farmer

.1391.482.382.566Pol

.0302.176.000.000Number of dekar land Owned

.00022.954.1864.264(Constant)

Sig.tStd. ErrorB

Dependent Variable: I. of political 

control of sales of agricultural estates 

Compare this table with the previous. What has changed?

How do we interpret the coefficient on ”Pol” and ”Farmer”?
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Recall: 

Multiple regression: modell
Let K = number of parameters in the model 

(then K-1 = number of variables)

Population model

• yi = 0 + 1 xi1 + 2 xi2 + 3 xi3 +...+ K-1 xi,K-1 + i

i = 1, ... ,N; where N = number of case in the population

Sample model

• yi = b0 + b1 xi1 + b2 xi2 + b3 xi3 +...+ bK-1 xi,K-1 + ei

i = 1, ... ,n; where n = number of case in the sample
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Conclusions (1)

• Linear regression can easily be extended to use 2 
or more explanatory variables

• If the assumptions of the regression is satisfied 
(that the error terms are normally distributed with 
independent and identically distributed errors –
normal I.i.d. errors) the regression will be a 
versatile and strong tool for analytical studies of 
the connection between a dependent and one or 
more independent variables



Ref.: http://www.svt.ntnu.no/iss/Erling.Berge/ Fall 2009

© Erling Berge 2009 84

Fall 2009 © Erling Berge 2009 167

Conclusions (2)

• The most common method of estimating 
coefficients for a regression model is called OLS 
(ordinary least squares)

• Coefficients computed based on a sample are seen 
as estimates of the population coefficient

• Using the t-test we can judge how good such 
coefficient estimates are 

• Using the F-test we may evaluate several 
coefficient estimates in one test
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Conclusions (3)
• Dummy variables are useful in several ways

– A single dummy coded x-variable will give a test of the 
difference in means for two groups (0 and 1 groups)

– Nominal scale variables with more than 2 categories can 
be recoded by means of dummy coding and included in 
regression anlysis

– By using effect coding we can perform analysis of 
variance of the ANOVA type



Ref.: http://www.svt.ntnu.no/iss/Erling.Berge/ Fall 2009

© Erling Berge 2009 85

Fall 2009 © Erling Berge 2009 169

SOS3003 
Applied data analysis for social 

science 
Lecture notes on 

Hamilton Ch 8 p249-282 Factor analysis 
and 

A Low-Tech Guide to Causal Modelling. 

Erling Berge
Department of sociology and political science

NTNU

Fall 2009 © Erling Berge 2009 170
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Causal analysis
• Experiment

– Randomized causal impacts (”treatment”) provide precise 
causal conclusions about effects (”response”) if there is 
significant differences in means

– This can be impossible to achieve due to 
• Practical conditions

• Economic constraints

• Ethical judgements

• Instead one tries to obtain quasi-experiments
– Using for example regression analysis
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Model of causal effects Ref.:

• Research using observations utilize concepts 
from experimental design

– “Treatment”, “Stimulus”

– “Effect”, “Outcome”

Ref.: 

Winship, Chrisopher, and Stephen L. Morgan 1999 “The Estimation of Causal 
Effects from Observational Data”, Annual Review of Sociology Vol 25: 659-
707
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Experiments allocate ”cases” randomly to 
one of two groups:

• TREATMENT (T)

with observation
– before treatment

– after treatment

• CONTROLL (C) 

with observation
– before non-treatment

– after non-treatment
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The counterfactual hypothesis for the study of 
causality

• Individual “i” can a priori be assumed selected 
for one of two groups
– Treatment group, T, or control group, C.

• Treatment, t, as well as non-treatment, c, can a 
priori be given to individuals both in the T- and 
C-group

• In reality we are able to observe t only in the T-
group and c in the C-group
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Modelling of causal effects:
The counterfactual hypothesis (1)

• There are for each individual ”i” four possible 
outcomes
– Yi(c,C) or Yi(t,C); if allocated to a control group

– Yi(c,T) or Yi(t,T) ; if allocated to a treatment group 

– Only Yi(c, given that ”i” is a member of C) or 

– Yi(t, given that ”i” is a member of T) can be observed for 
any particular individual
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Modelling of causal effects:
The counterfactual hypothesis (2)

More formally one may write the possible 
outcomes for person no i:

 Treatment: t Non-treat.: c 
T-group Yt

i  T Yc
i  T 

C-group Yt
i  C Yc

i  C 
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Modelling of causal effects:
The counterfactual hypothesis (3)

• Then the causal effect for individual i is

• i = Yi (t) - Yi (c)

• Only one of these two quantities can be observed 
for any given individual

• This leads to the “counterfactual hypothesis”
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The counterfactual hypothesis: 
concluding

• “The main value of this counterfactual 
framework is that causal inference can be 
summarized by a single question: Given that 
the i cannot be calculated for any individual 
and therefore that Yt

i and Yc
i can be observed 

only on mutually exclusive subsets of the 
population, what can be inferred about the 
distribution of the i from an analysis of Yi and 
Ti ?” (Winship and Morgan 1999:664)
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Modelling of causal effects: from individual 

effects to population averages

• We can observe 
Yi (c |iC), but not Yi (t |iC) 

• The problem may be called a problem of 
missing data

• Instead of individual effects we can 
estimate average effects for the total 
population
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Modelling of causal effects (1)

• Average effects can be estimated, but 
usually it involves difficulties

• One assumption is that the effect of the 
treatment will be the same for any given 
individual independent of which group the 
individual is allocated to

• This, however, is not self-evident 
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Modelling of causal effects (2)

The counterfactual hypothesis assumes: 

• That changing the treatment group for one 
individual do not affect the outcome of 
other individuals (no interaction)

• That treatment in reality can be manipulated 
(e.g. sex can not be manipulated) 
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Modelling of causal effects (3)
• One problem is that in a sample the process 

of allocating person no i to a control or 
treatment group may affect the estimated 
average effect (the problem of selection)

• In some cases, however, the interesting 
quantity is the average effect for those who 
actually receive the treatment
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Modelling of causal effects (4)
• It can be shown that there are two sources of 

bias for the estimates of the average effect 
1. An established difference between the C- and 

T- groups
2. The treatment works in principle differently 

for those allocated to the T-group compared to 
those in the C-group

– To counteract this one has to develop models of 
how people get into C- and T-groups (selection 
models)
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Modelling of causal effects (5)

• A general class of methods that may be used to 
estimate causal effects are the regression models

• These are able to “control for” observable 
differences between the C- and T- groups, but not 
for unequal response to treatment 
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Causal modelling
• “path analysis” or “structural equations 

modelling” go back to the 60ies 
• Jöerskog and Sörbom: LISREL

– Use maximum likelihood to estimate model 
parameters maximising fit to the variance-
covariance matrix

– Commonly available in statistical packages 
• Covariance structural modelling
• Structural equation modelling
• Full information maximum likelihood estimation
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Low-Tech approach
• Uses OLS to do simple versions of the structural 

equations models
• The key assumption is the causal ordering of 

variables. In survey data this ordering is supplied 
by theory

• The causal diagram visualize the order of 
causation:
– Causality flows from left to right 
– Intervening variables give rise to indirect effects
– “reverse causation” creates problems
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Low-Tech causal modelling
Figure 1

Fall 2009 © Erling Berge 2009 188

Multiple regression as a causal model
Figure 2
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Quantities in the diagram

Is an estimate of unmeasured influences 
called error term or disturbance

√{1-RY.123
2}

Coefficient of determination R2 from the 
regression of Y on X1, X2, X3

RY.123
2

Usually a standardized regression coefficient 
(“beta weight”) taken from the regression of 
Y on X1, and “.” means controlled for X2, X3

bY1.23, etc. 

Pearson correlations among x-variablesr12, r13, r23
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Multiple regression

• All assumptions and all problems apply as 
before
– Note in particular that error terms must be 

uncorrelated with included x-variables (no 
relevant variable has been omitted) 

• If some of the X-es are intervening in figure 
2 the model is too simple, but it matters 
only if we are interested in causality 
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Path coefficients 
Figure 3
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New elements in figure 3

The error term from the regression of X3 on X1

and X2

√{1-R3.12
2}

Coefficient of determination (R2) from the 
regression of X3 on X1 and X2

R3.12
2

Standardized regression coefficients (“beta 
weight”) from the regression of X3 on X1

controlled for X2 and from the regression of X3

on X2 controlled for X1

b31.2, b32.1
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The structural model of figure 3
• Ŷ = bY1.23X1 + bY2.13X2 + bY3.12X3

• X3 = b31.2X1 + b32.1X2

• In structural equations variables and coefficients are 
standardized

• That means that variables have an average of 0 and a 
standard deviation of 1 and that coefficients vary 
between -1 and +1

^
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Figure 5: the regression of X3 on X1 and X2
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Direct, Indirect and Total Effects

• Indirect effects equal the product of 
coefficients along any series of causal paths 
that link one variable to another 

• Total effects equal the sum of all direct and 
indirect effects linking two variables
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Indirect effects as products of path coefficients

• Ŷ = bY1.23X1 + bY2.13X2 + bY3.12X3

• X3 = b31.2X1 + b32.1X2

• Means that we have

• Ŷ = bY1.23X1 + bY2.13X2 + bY3.12X3

• = bY1.23X1 + bY2.13X2 + bY3.12(b31.2X1 + b32.1X2) 

• = bY1.23X1 + bY2.13X2 + bY3.12b31.2X1 + bY3.12b32.1X2

• = (bY1.23 + bY3.12b31.2)X1 + (bY2.13 + bY3.12b32.1)X2

• Compare compound coefficients to the diagram

^

^
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Structural model
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Path Coefficients
• X1 to Y: bY1.23 (regression coefficient of Y on X1, controlling 

for X2 and X3)
• X2 to Y: bY2.13 (regression coefficient of Y on X2, controlling 

for X1 and X3)
• X3 to Y: bY3.12 (regression coefficient of Y on X3, controlling 

for X1 and X2) 
• X1 to X3: b31.2 (regression coefficient of X3 on X1, 

controlling for X2)
• X2 to X3: b32.1 (regression coefficient of X3 on X2, 

controlling for X1)
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Direct effects

regression coefficient of X3 on X2, 
controlling for X1

X2 to X3: b32.1

regression coefficient of X3 on X1, 
controlling for X2

X1 to X3: b31.2

regression coefficient of Y on X3, 
controlling for X1 and X2

X3 to Y: bY3.12

regression coefficient of Y on X2, 
controlling for X1 and X3

X2 to Y: bY2.13

regression coefficient of Y on X1, 
controlling for X2 and X3

X1 to Y: bY1.23
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Indirect and total effects

bY2.13 + (b32.1 × bY3.12)X2 to Y:

bY1.23 + (b31.2 × bY3.12)X1 to Y:

Total effects

b32.1 × bY3.12X2 to Y, through X3:

b31.2 × bY3.12X1 to Y, through X3:

Indirect effects
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Additions to multiple regressions

• We learn something new if the indirect 
effects are large enough to have substantial 
interest

• More than two steps of causation tends to 
become very weak
– 0.3*0.3*0.3 = 0.027 

– 0.3 standard deviation change in causal 
variables leads to a 0.027 standard deviation 
change in the dependent variable
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Variables and measurement

• All interval scale variables used in multiple regression 
(including non-linear transformed variables and interaction 
terms) can be included in structural equations models

• But interpretation becomes tricky when variables are 
complex. Conditional effect plots are very useful

• Robust, quantile, logit, and probit regression should not be 
used

• Categorical variables should not be used as intervening 
variables

• Scales or index variables can be used as usual in OLS 
regression
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Concluding on structural equations modelling

• Including factors from factor analysis as explanatory 
variables make it possible to approximate a LISREL type 
analysis

• If assumptions are true LISREL will perform a much better 
and more comprehensive estimation, but too often 
assumptions are not true then the low-tech approach has 
access to the large toolkit of OLS regression for 
diagnostics and exploratory methods testing basic 
assumptions and discovering unusual data points

• Simple diagnostic work sometimes yields the most 
unexpected, interesting and replicable findings from our 
research
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Principal components and factor analysis

• Principal components and factor analysis are both 
methods for data reduction

• They seek underlying dimensions that are able to 
account for the pattern of variation among a set of 
observed variables

• Principal components analysis is a transformation 
of the observed data where the idea is to explain as 
much as possible of the observed variation with a 
minimum number of components
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Factor analysis

• Estimates coefficients on - and values of -
unobserved variables (Factors) to explain the co-
variation among an observed set of variables

• The assumption is that a small set of the 
unobserved factors are able to explain most of the 
co-variation

• Hence factor analysis can be used for data 
reduction. Many variables can be replaced by a 
few factors
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Factor analysis
• Zk = lk1F1 + lk2F2 + … + lkjFj + … + lkJFJ + uk

– k = 1, 2, 3, … , K 

• Symbols 
– K observed variables, Zk ; k=1, 2, 3, … , K
– J unobserved factors, Fj ; j=1, 2, 3, … , J where J<K

– For each variable there is a unique error term, uk, also called 
unique factors while the F factors are called common factors

– For each factor there is a standardized regression coefficient, lkj, 
also called factor loading; k refers to variable no, j refers to
factor no. An index denoting case no has been omitted here. 
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Correlation of factors
• Factors my be correlated or uncorrelated

– Uncorrelated: they are then called orthogonal

– Correlated: they are then called oblique

• Factors may be rotated
– Oblique rotations create correlated factors

– Orthogonal rotations create uncorrelated factors
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Principal components
• Represents a simple transformation of variables. There are 

as many principal components as there are variables
• Principal components are uncorrelated 

• Zk = lk1F1 + lk2F2 + … + lkjFj + … + lkKFK

• If the last few principal components explain little variation 
we can retain J<K components. Thus Principal 
Components also can be used to reduce data. 

• Zk = lk1F1 + lk2F2 + … + lkjFj + … + lkJFJ +  vk

where J<K and
the residual vk has small variance and consist of the 
discarded principal components 



Ref.: http://www.svt.ntnu.no/iss/Erling.Berge/ Fall 2009

© Erling Berge 2009 105

Fall 2009 © Erling Berge 2009 209

Principal components vs factor analysis

• Principal components analysis attempts to explain the 
observed variation of the variables

• Factor analysis attempts to explain their intercorrelations
• Use principal components to generate a composite variable 

that reproduce the maximum variance  of observed 
variables

• Use factor analysis to model relationships between 
observed variables and unobserved latent variables and to 
obtain estimates of latent variable values 

• The choice between the two is often blurred, to some 
degree it is a matter of taste
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The number of principal components

• K variables yield K principal components

• If the first few components account for most of the variation, we can 
concentrate on them and discard the remaining 

• The eigenvalues of the standardized correlation matrix provides a 
guide here 

• Components are raked according to eigenvalues

• A principal component with an eigenvalue <1 accounts for less 
variance than a single variable

• Thus we discard components with eigenvalues below 1 

• Another criterion for keeping components is that each component 
should have substantive meaning
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Eigenvalues and explained variance

• In a covariance matrix the sum of eigenvalues equals the 
sum of variances. 

• In a correlation matrix this = K (the number of variables) 
since each standardized variable has a variance of 1 

• Thus the sum of eigenvalues of the principal components 

• 1 + 2 + 3 + … + K = K and 

• j / K = proportion of variance explained by component 
no j
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Uniqueness and communality
• If K-J components are discarded and we have only 

J factors 
• Zk = lk1F1 + lk2F2 + … + lkjFj + … + lkJFJ +  vk

• And an error term vk

• The variance of the error term is called the 
uniqueness of the variable 

• Communality is the proportion of a variable’s 
variance shared with the components

• Communality = hk
2 = 1 - Uniqueness = j kj

2 , 
j=1,…, J ; k = variable number
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Rotation to simple structure
• The idea is to transform (rotate) the factors so that 

the loadings on each components make it easier to 
interpret the meaning of the component

• If the loading are close either to 1 or -1 on one 
factor and close to 0 on all others the structure is 
simpler to interpret: we rotate to “simple 
structure”. The rotated factors fit data equally well 
but are simpler to interpret

• Rotations may be
– Orthogonal  (method typically: varimax)
– Oblique        (method typically: oblimin, promax)
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Why rotate?
• Underlying unobserved dimensions may in 

theory be seen as correlated
• Allowing correlated factors may provide 

even simpler structure than uncorrelated 
factors, thus easier to interpret

• All rotations fit data equally well
• Hence the one chosen depends on a series 

of choices done by the analyst
• Try different methods to see if results differ
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SPSS output
• For rotated factor solutions with correlated factors SPSS 

provides two matrixes for interpretation
• The pattern matrix provides the direct regression of the 

variables on the factors. The coefficients tells about the 
direct contribution of a factor in explaining the variance of 
a variable. Due to the correlations of the factors there are 
also indirect contributions 

• The structure matrix provides the correlations between the 
variables and the factors
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Factor scores

• Both principal components and factor analysis may be 
used to compute composite scores called factor scores 

• Recall that variables and factors are assumed to be related 
like
– Zk = lk1F1 + lk2F2 + … + lkjFj + … + lkKFK

• Then it is possible to find values cij making 
– Fj = c1jZ1 + c2jZ2 + … + ckjZj + … + cKjZK

• The coefficients cij are the factor score coefficients. They 
come from the regression of the factor Fj on the variables 

ˆ



Ref.: http://www.svt.ntnu.no/iss/Erling.Berge/ Fall 2009

© Erling Berge 2009 109

Fall 2009 © Erling Berge 2009 217

Methods for extracting factors
• Principal factor analysis

– The original correlation matrix R is replaced by R*
where the original 1-values of the diagonal has been 
replaced by estimates of the communality (the shared 
variance)

– The factors extracted tries to explain the co-variance or 
correlations among the variables. 

– The unexplained variance is attributed to a unique 
factor (error term). The uniqueness may reflect 
measurement error or something that this variable 
measure that no other variable measure

– The most common estimate of communality is Rk
2 the 

coefficient of determination from the regression of Zk
on all other variables
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How many factor should we retain?
• In principal component analysis factors with 

eigenvalues above 1 is recommended

• In principal factor analysis factors with 
eigenvalues above 0 is recommended

• Procedure:
– Extract initial factors or components

– Rotate to simple structure

– Decide on how many factors to retain

– Obtain and use scores for the retained factors, ignoring 
discarded factors
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Concluding (1)
• Principal components

– transformation of the data, not model based. 
Appropriate if goal is to compactly express 
most of the variance of k variables. Minor 
components (perhaps all except the first) may 
be discarded and viewed as a residual. 

• Factor analysis
– Estimates parameters of a measurement model 

with latent (unobserved) variables. 
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Concluding (2)
• Types of factor analysis

– Principal factoring – principal components of a 
modified correlation matrix R* in which communality 
estimates (Rk

2) replace one’s on the main diagonal
• Principal factoring without iteration
• Principal factoring with iteration

– Maximum likelihood estimation – significance tests 
regarding number of factors and other hypotheses, 
assuming multivariate normality
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Concluding (3)

• Rotation 
– If we retain more than one factor rotation simplifies 

structure and improves interpretability
• Orthogonal rotation (varimax) maximum polarization given 

uncorrelated factors 
• Oblique rotation (oblimin, promax) further polarization by 

permitting interfactor correlations. The results may be more 
interpretable and more realistic than uncorrelated factors

• Scores 
– Factor scores can be calculated for use in graphs and 

further analysis, based on rotated or unrotated factors 
and principal components 
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Concluding (4)
• Factor analysis is based on correlations and 

hence as affected by non-linearities and 
influential cases as in regression
– Use scatter plots to check for outliers and non-

linearities

– In maximum likelihood estimation this 
becomes even more important since it assumes 
multivariate normality making it even less 
robust than principal factors 
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Principal components of trust in 
Malawi

• Survey of 283 households in 18 villages in 
Malawi, 2007

• There are 8 related questions asked in one 
group

• Are there 1, 2 or more underlying 
dimensions shaping the attitudes expressed?

• The questions: 
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M3 Would you say you trust all, most, some or just a few 
people in the following groups? (All=1 – None=5)

Do not 
know

NoneOnly a 
few

SomeMostAllPeople not from same church/mosqueh

Do not 
know

NoneOnly a 
few

SomeMostAllPeople from same church/mosqueg

Do not 
know

NoneOnly a 
few

SomeMostAllPeople from outside ethnic groupf

Do not 
know

NoneOnly a 
few

SomeMostAllPeople of same ethnic groupe

Do not 
know

NoneOnly a 
few

SomeMostAllPeople from outside the villaged

Do not 
know

NoneOnly a 
few

SomeMostAllYour villagec

Do not 
know

NoneOnly a 
few

SomeMostAllYour relativesb

Do not 
know

NoneOnly a 
few

SomeMostAllYour family membersa
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Trust in Malawi: descriptiveDescriptive Statistics

1.60 .935 266

2.12 1.136 266

2.69 1.090 266

3.28 1.118 266

2.90 1.082 266

3.26 1.098 266

2.39 1.062 266

3.02 1.197 266

M3.a. Trust in family
members

M3.b. Trust in relatives

M3.c. Trust in people in
own village

M3.d. Trust in people
outside the village

M3.e. Trust in people of
same ethnic group

M3.f. Trust in people
outside ethnic group

M3.g. Trust in people from
same church/mosque

M3.h. Trust in people not
from same
church/mosque

Mean Std. Deviation Analysis N
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Trust in Malawi: correlation of variables
Correlation Matrix

1.000 .500 .416 .236 .370 .316 .422 .305

.500 1.000 .496 .315 .363 .353 .424 .292

.416 .496 1.000 .482 .588 .573 .465 .430

.236 .315 .482 1.000 .526 .610 .233 .469

.370 .363 .588 .526 1.000 .702 .504 .643

.316 .353 .573 .610 .702 1.000 .430 .618

.422 .424 .465 .233 .504 .430 1.000 .536

.305 .292 .430 .469 .643 .618 .536 1.000

M3.a. Trust in family
members

M3.b. Trust in relatives

M3.c. Trust in people in
own village

M3.d. Trust in people
outside the village

M3.e. Trust in people of
same ethnic group

M3.f. Trust in people
outside ethnic group

M3.g. Trust in people from
same church/mosque

M3.h. Trust in people not
from same
church/mosque

M3.a. Trust
in family
members

M3.b. Trust
in relatives

M3.c. Trust
in people in
own village

M3.d. Trust
in people
outside the
village

M3.e. Trust
in people of
same ethnic
group

M3.f. Trust in
people
outside
ethnic group

M3.g. Trust
in people
from same
church/mos
que

M3.h. Trust
in people not
from same
church/mosq
ue
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Trust in Malawi: number of factors
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Trust in Malawi: factor/ component matrix
Component Matrix a

.588 .586

.624 .532

.776 .080

.675 -.398

.832 -.221

.816 -.330

.690 .265

.757 -.262

M3.a. Trust in family
members

M3.b. Trust in relatives

M3.c. Trust in people in
own village

M3.d. Trust in people
outside the village

M3.e. Trust in people of
same ethnic group

M3.f. Trust in people
outside ethnic group

M3.g. Trust in people from
same church/mosque

M3.h. Trust in people not
from same
church/mosque

1 2

Component

Extraction Method: Principal Component Analysis.

2 components extracted.a. 
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Trust in Malawi: orthogonal factors

.246.762-.262.757
M3.h. Trust in people not from same church/mosque

.627.391.265.690M3.g. Trust in people from same church/mosque

.228.850-.330.816M3.f. Trust in people outside ethnic group

.324.798-.221.832M3.e. Trust in people of same ethnic group

.089.779-.398.675M3.d. Trust in people outside the village

.531.572.080.776M3.c. Trust in people in own village

.800.178.532.624M3.b. Trust in relatives

.821.117.586.588M3.a. Trust in family members

F2F1F2F1Variables

Orthogonal 
varimax

Unrotated components Rotated component matrix
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Trust in Malawi: communalities
Communalities

.689

.671

.609

.614

.741

.774

.546

.641

M3.a. Trust in family
members

M3.b. Trust in relatives

M3.c. Trust in people in
own village

M3.d. Trust in people
outside the village

M3.e. Trust in people of
same ethnic group

M3.f. Trust in people
outside ethnic group

M3.g. Trust in people from
same church/mosque

M3.h. Trust in people not
from same
church/mosque

Extraction

Extraction Method: Principal Component Analysis.
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Trust in Malawi: explained variance

Total Variance Explained

4.199 52.487 52.487 3.071 38.387 38.387

1.087 13.582 66.069 2.215 27.681 66.069

Component
1

2

Total % of Variance Cumulative % Total % of Variance Cumulative %

Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings

Extraction Method: Principal Component Analysis.
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Trust in Malawi: oblique factors pattern matrix

.016.792.045.779.246.762
M3.h. Trust in people not from same 

church/mosque

.582.237.573.268.627.391
M3.g. Trust in people from same 

church/mosque

-.036.899-.001.881.228.850
M3.f. Trust in people outside ethnic group

.093.806.120.797.324.798
M3.e. Trust in people of same ethnic group

-.170.864-.133.838.089.779
M3.d. Trust in people outside the village

.409.476.414.493.531.572M3.c. Trust in people in own village

.855-.067.826-.014.800.178M3.b. Trust in relatives

.901-.145.868-.087.821.117M3.a. Trust in family members

F2F1F2F1F2F1Variables

promaxobliminvarimax
(orthogonal)

Rotated component matrix
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.452.801.416.800.246.762
M3.h. Trust in people not from same 

church/mosque

.712.557.700.541.627.391
M3.g. Trust in people from same 

church/mosque

.460.880.419.880.228.850
M3.f. Trust in people outside ethnic group

.537.857.500.854.324.798
M3.e. Trust in people of same ethnic group

.306.771.267.775.089.779
M3.d. Trust in people outside the village

.671.702.649.690.531.572M3.c. Trust in people in own village

.817.403.819.380.800.178M3.b. Trust in relatives

.821.351.826.327.821.117M3.a. Trust in family members

F2F1F2F1F2F1Variables

promaxobliminvarimaxRotated component matrix

Trust in Malawi: oblique factors structure matrix
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Trust in Malawi: correlation of components

Component Correlation Matrix

1.000 .477

.477 1.000

Component
1

2

1 2

Extraction Method: Principal Component Analysis.  
Rotation Method: Oblimin with Kaiser Normalization.
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Trust in Malawi: variables in component plot
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Trust in Malawi: Orthogonal Factor 1 by district
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Trust in Malawi: Orthogonal Factor 2 by district
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Trust in Malawi: Orthogonal factors by district
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SOS3003 
Applied data analysis for social 

science 
Lecture notes on 

Allison: Missing data

Erling Berge
Department of sociology and political science

NTNU
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Literature

• Allison, Paul D 2002 “Missing Data”, Sage 
University Paper: QASS 136, London, Sage, 



Ref.: http://www.svt.ntnu.no/iss/Erling.Berge/ Fall 2009

© Erling Berge 2009 121

Fall 2009 © Erling Berge 2009 241

There is a missing case in the sample
• If one person

– Refuses to answer
– Are not at home
– Has moved away
– Etc. 

• The problem of missing data belong to the study of biased 
samples. In general biased samples is a more severe 
problem than the fact that we are missing answers for a 
few variables on some cases (see Breen 1996 ”Regression 
Models: Censored, Sample Selected, or Truncated Data”, 
QASS Paper 111, London, Sage)

• But the problems are related
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There are missing answers for a few variables if

• Persons refuse to anser certain questions
• Persons forget or do n ot notice some question or the 

interviewer does it
• Persons do not know any answer to the question
• The question is irrelevant
• In administrative registers some documents may have 

been lost
• In research designs where variables with measurement 

problems may have been measured only for a minority of 
the sample
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Missing data entail problems
• There are practical problems due to the fact that all 

statistical procedures assumes complete data 
matrices 

• It is an analytical problem since missing data as a 
rule produce biased parameter estimates

• It is important to distinguish between data missing 
for random causes and those missing from 
systematic causes
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The simple solution: remove all cases with 
missing data 

• Listwise/ casewise removal of missing data means to remove all cases 
missing data on one or more variables included in the model 

• The method has good properties, but may in some cases remove most 
of the cases in the sample

• Alternatives like pairwise removal or replacement with average 
variable value has proved not to have good properties

• More recently developed methods like ”maximum likelihood” and 
”multiple imputation” have better properties but are more demanding

• In general it pays to do good work in the data collection stage 
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Types of randomly missing

• MCAR: missing completely at random
– Means that missing data for one person on the variable y is 

uncorrelated with the value on y and with the value on any other
variable in the data set (however, internal case by case the value 
of missing may of course correlate with the value missing on 
other variables)

• MAR: missing at random
– Means that missing data for person i on the variable y do not 

correlate with the value on y if one control for the variation of 
other variables in the model

– More formally: 
Pr(Yi = missing l Yi,Xi) = Pr(Yi =missing l Xi) 
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Process resulting in missing
• Is ignorable if

– The result is MAR and the parameters governing the process are 
unrelated to the parameters that are to be estimated

• Is non-ignorable if
– The result is not MAR. Estimation of the model will then require

a separate model of the missing process

– See Breen 1996 ”Regression Models: Censored, Sample 
Selected, or Truncated Data”, QASS Paper 111, London, Sage

• Here the situation with MAR will be discussed



Ref.: http://www.svt.ntnu.no/iss/Erling.Berge/ Fall 2009

© Erling Berge 2009 124

Fall 2009 © Erling Berge 2009 247

Conventional methods

Common methods in cases with MAR data:
• Listwise deletion
• Pairwise deletion
• Dummy variable correction
• Imputation (guessing a value for the 

missing)
Of the commonly available methods
listwise deletion is the best
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Listwise deletion (1)

• Can always be used

• If data are MCAR we have a simple random 
subsample of the original sample

• Smaller n entails large variance estimates

• In the case of MAR data and the missing 
values on an x-variable are independent of 
the value on y, listwise deletion will 
produce unbiased estimates
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Listwise deletion (2)

• In logistic regression listwise deletion may 
cause problems only if missing is related 
both to dependent and independent 
variables

• If missing depends only on the values of the 
independent variable listwise deletion is 
better than maximum likelihood and 
multiple imputation
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Pairwise deletion 
• Means that all computations are based on all available 

information seen pairwise for all pairs of variables 
included in the anlysis

• One consequence is that different parameters will be 
estimated on different samples (we see variation in n from 
statistic to statistic)

• Then all variance estimates are biased

• Common test statistics provides biased estimates (e.g. t-
values and F-values)

• DO NOT USE PAIRWISE DELETION !!
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Dummy variable correction
If data is missing for the independent variable x

• Let x*i = xi if xi is not missing and 
x*i = c (an arbitrary constant) if xi is missing

• Define Di=1 if xi is missing, 0 otherwise
• Use x*i and Di in the regression instead of xi

• In nominal scale variables missing can get its own dummy
Investigations reveal that even if we have MCAR data 
parameter estimates will be biased

Do not use dummy variable correction!
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Imputation
• The goal is to replace missing values with reasonable 

guesses about what the value might have been before one 
do an analysis as if this were real values; e.g. 
– Average of valid values
– Regression estimates based on many variables and case with 

valid observations

• Parameter estimates are consistent, but estimates of 
variances are biased (consistently to small), and the test 
statistics are too big

• Avoid if possible the simple form of imputation
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Concluding on conventional methods for 
missing data

• Conventional methods of correcting for missing 
data make problems of inference worse

• Be careful in the data collection so that the 
missing data are as few as possible

• Make an effort to collect data that may help in 
modelling the process resulting in missing

• If data is missing use listwise deletion if not 
maximum likelihood or multiple imputation is 
available 
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New methods for ignorable missing data (MAR 
data): Maximum Likelihood (ML)

• Conclusions
– Based on the probability for observing just 

those values found in the sample

– ML provides optimal parameter estimates in 
large samples in the case of MAR data

– But ML require a model for the joint 
distribution of all variables in the sample that 
are missing data, and it is difficult to use for 
many types of models 



Ref.: http://www.svt.ntnu.no/iss/Erling.Berge/ Fall 2009

© Erling Berge 2009 128

Fall 2009 © Erling Berge 2009 255

ML-method: example (1)
• Observing y and x for 200 

cases
• 150 distributed as shown
• For 19 cases with Y=1 x is 

missing and for 31 cases 
with Y=2 x is missing 

• We want to find the 
probabilities pij in the 
population

4334X=2

2152X=1

Y=2Y=1

p22p21X=2

p12p11X=1

Y=2Y=1
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ML-method: example (2)
• In a table with I rows and J columns, complete 

information on all cases and with nij cases in 
cell ij the Likelihood is

 
,

i jn

i j
i j

p L

That is the product of all probabilities for every table 
cell taken to the power of the cell frequency
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ML-method: example (3)

       11 12 21 22

11 12 21 22

n n n n
p p p pL

       52 21 34 43

11 12 21 22p p p pL

For a fourfold table the Likelihood will be

For the 150 cases in the table above where we 
have all observations the Likelihood will be
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ML-method: example (4)
• For tables the ML estimator is pij = nij/n
• This provides good estimates for the table where we 

do not have missing data (listwise deletion)
• How can one use the information about y for the 50 

cases where x is missing?
• Since MAR is assumed to be the case the 50 extra 

cases with known y should follow the marginal 
distribution of y

• Pr(Y=1) = (p11 + p21) og Pr(Y=2) = (p12 + p22) 
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ML-method: example (5)
• Taking into account all that is known about the 

200 cases the Likelihood becomes 

           52 21 34 43 19 31

11 12 21 22 11 21 11 21p p p p p p p p  L

• The ML-estimators will now be

      ijp p x i p y j  | y = j
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ML-method: example (6)
• Taking into account the information we have about 

cases with missing data, parameter estimates 
change

0.3190.287p22

0.1560.140P12

0.2080.227p21

0.3170.346p11

Missing includedMissing deletedEstimate of
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The ML-method
• For the general case with missing data there are two 

approaches
– The EM method, a two stage method where one starts out with the 

expected value of the missing data and use these to obtain 
parameter estimates that again will be used to provide better 
estimates of the missing values and so on …

(this method provides biased estimates of standard errors)

– Direct ML estimates are better but can be provided only for linear 
and log-linear models 
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New methods for ignorable missing data (MAR data): 
Multiple Imputation

• Conclusions
– Is based on a random component added to 

estimates of the missing data values

– Has as good properties as the ML method and 
is easier to implement for all kinds of models 

– But it gives different results every time it is 
used 
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Multiple Imputation (1)

• MI have the same optimal properties as the ML 
method. It can be used on all kinds of data and 
with all kind of models. In principle it can be done 
with the ordinary analytical tools

• The use of MI can be rather convoluted. This 
makes it rather easy to commit errors. And even if 
it is done correctly one will never have the same 
result twice due to the random component in the 
imputed variable value
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Multiple Imputation (2)

• Use of data from a simple imputation (with or 
without a random component) will underestimate 
the variance of parameters. Conventional 
techniques are unable to adjust for the fact that 
data have been generated by imputation

• The best way of doing imputation with a random 
component is to repeat the process many times and 
use the observed variation of parameter estimates 
to adjust the estimates of the parameter variances

• Allison, p.30-31, explaines how this can be done
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Multiple Imputation (3)
• MI requires a model that can be used to predict values of missing 

data. Usually there is an assumption of normally distributed 
variables and linear relationships. But models can be tailored to 
each problem

• MI can not handle interactions

• MI model should contain all variables of the anlysis model

• (including the dependent variable)

• MI works only for interval scale variables. If nominal scale 
variables are used special programs are needed

• Testing of several coefficients in one test is complicated 
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When data are missing systematically

• Will usually require a model of how the 
missing cases came about

• ML and MI approaches can still be used, 
but with much stronger restrictions and the 
results are very sensitive for deviations from 
the assumptions
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Summary
• If listwise deletion leaves enough data this is the 

simples solution
• If listwise deletion do not work one should test out 

multiple imputation
• If there is a suspicion that data are not MAR one 

needs to create a model of the process creating 
missing. This can then be used together with ML or 
MI. Good results require that the model for missing 
is correct
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SOS3003 
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Lecture notes on 

Hamilton Ch 4 p109-123
Regression criticism I

Erling Berge
Department of sociology and political science

NTNU
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Analyses of models are based on 
assumptions

• OLS is a simple technique of analysis with very 
good theoretical properties. But

• The good properties are based on certain 
assumptions

• If the assumptions do not hold the good properties 
evaporates

• Investigating the degree to which the assumptions 
hold is the most important part of the analysis
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OLS-REGRESSION: assumptions

• I SPECIFICATION REQUIREMENT

• The model is correctly specified

• II GAUSS-MARKOV REQUIREMENTS

• Ensures that the estimates are “BLUE”

• III NORMALLY DISTRIBUTED ERROR TERM

• Ensures that the tests are valid
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I SPECIFICATION REQUIREMENT

• The model is correctly specified if
– The expected value of y, given the values of the 

independent variables, is a linear function of the 
parameters of the x-variables

– All included x-variables have an impact on the 
expected y-value

– No other variable has an impact on expected y-value at 
the same time as they correlate with included x-
variables
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II GAUSS-MARKOV REQUIREMENTS 
(i)

(1) x is known, without stochastic variation
(2) Errors have an expected value of 0 for all i

•E(i for all i

Given (1) and (2) i will be independent of xk for all k

and OLS provides unbiased estimates of 
(unbiased = forventningsrett)
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II GAUSS-MARKOV REQUIREMENTS (ii)

(3) Errors have a constant variance for all i

• Var(i for all i

This is called homoscedasticity

(4) Errors are uncorrelated with each other

• Cov(i, j for all i ≠ j 

This is called no autocorrelation 
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II GAUSS-MARKOV REQUIREMENTS (iii)

Given (3) and (4) in addition to (1) and (2) provides:
• a. Estimates of standard errors of regression coefficients are 

unbiased and 
• b. The Gauss-Markov theorem:

OLS estimates have less variance than any other linear 
unbiased estimate (including ML estimates) 

OLS gives “BLUE”
(Best Linear Unbiased Estimate)
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II GAUSS-MARKOV REQUIREMENTS (iv)

(1) - (4) are called the GAUSS-MARKOV requirements

• Given (2) - (4) with an additional requirement that 
errors are uncorrelated with x-variables:

•cov (xik, i for all i,k

The coefficients and standard errors are 
consistent (converging in probability to the true 
population value as sample size increases) 
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Footnote 1:
Unbiased estimators

• Unbiased means that 

E[bk ] = k

• In the long run we are bound to find the 
population value - k - if we draw 
sufficiently many samples, calculates bk and 
average these
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Footnote 2:
Consistent estimators

• An estimator is consistent if we as sample size 
(n) grows towards infinity, find that b 
approaches  and  sb approaches 

• [bk is a consistent estimator of k if we for any 
small value of c have

limn→∞ [Pr{ Ibk - kI < c }] = 1
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Footnote 3: In BLUE ”Best” means  
minimal variance estimator

• Minimal variance or efficient 
estimator means that 
var(bk) < var(ak) for all estimators 
a different from b 

• Equvalent: 
E[bk - k]2 < E[ak - k]2 for all 
estimators a unlike b 
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Footnote 4:
Biased estimators

• Even if the requirements ensuring that our 
estimates are BLUE one may at times find 
biased estimators with less varaince such as 
in 

• Ridge Regression
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Footnote 5: 
Non-linear estimators

• There may be non-linear estimators that are 
unbiased and with less variance than BLUE 
estimators
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III NORMALLY DISTRIBUTED ERROR 
TERM

• (5) If all errors are normally distributed with expectation 
0 and standard deviation of  , that is if

i ~ N(0,   for all i
– Then we can test hypotheses about  and and

– OLS estimates will have less variance than estimates from all 
other unbiased estimators 

– OLS results in “BUE”

(Best Unbiased Estimate)
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Problems in regression analysis that 
cannot be tested

• If all relevant variables are included
• If x-variables have measurement errors
• If the expected value of the error is 0
• (This means that we are unable to check 

if the correlation between the error term 
and x-variables actually is 0 and actually 
the same as the first point that we are 
unable to test if the model is correctly 
specified)
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Problems in regression analysis that can be 
tested (1)

• Non-linear relationships
• Inclusion of an irrelevant variable
• Non-constant error of the error term 

(heteroscedasticity)
• Autocorrelation for the error term
• Correlations among error terms
• Non-normal error terms
• Multicollinearity 
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Consequences of problems (Hamilton, p113)

X000Multicollinearity... no 
requirement

XX00 not normally distributedNormal 
distribution

-XXXX correlated with -”-

XXX0Autocorrelation-”-

XXX0Heteroscedasticity-”-

-XXXX with measurement errorGauss-Markov

X000Included irrelevant 
variable

-”-

-XXXExcluded relevant variable-”-

-XXXNon-linear reltionshipSpecification

High 
var[b] 

Invalid 
t&F-tests

Biased estimate of 
SEb

Biased estimate 
of b

Problem Require
ment

Unwanted properties of estimates
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Problems in regression analysis that can 
be discovered (2)

• Outliers (extreme y-values)

• Influence (cases with large influence: 
unusual combinations of y and x-values)

• Leverage (potential for influence)
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Tools for discovering problems

• Studies of 
– One-variable distributions (frequency 

distributions and histogram)

– Two-variable co-variation (correlation and 
scatter plot)

– Residual (distribution and covariation with 
predicted values) 
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Correlation and scatter plot

125125125122N

1-,589,829-,689
Pearson CorrelationCRUDE BIRTH RATE

125128125125N
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Pearson CorrelationFERTILIZER USE PER 

HECTARE

125125125122N

,829-,4691-,505Pearson Correlation
MEAN ANNUAL 
POPULATION GROWTH

122125122125N

-,689,533-,5051
Pearson CorrelationENERGY 

CONSUMPTION PER 
PERSON

CRUDE 
BIRTH 
RATE

FERTILIZER 
USE PER 

HECTARE

MEAN 
ANNUAL 

POPULATION 
GROWTH

ENERGY 
CONSUMP
TION PER 
PERSON

Data from 122 countries 
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Correlation and scatter plot

ENERGY CONSUMPTION PER PERSON
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Heteroscedasticity

(non-constant variance of error term) can arise from:

• Measurement error (e.g. y more accurate the larger x is)

• Outliers

• If i contain an important variable that varies with both x 
and y (specification error)

• Specification error is the same as the wrong model and 
may cause heteroscedasticity

• An important diagnostic tool is a plot of the residual 
against predicted value (Ŷ)
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Example: Hamilton table 3.2

,2321,19880,51996,454Increase in # of People

,0008,64128,725248,197# of People Resident 1981

,0471,99195,021189,184head of house retired?

,002-3,16713,220-41,866Education in Years

,00018,671,026,492Summer 1980 Water Use

,0006,0533,46420,967Income in Thousands

,2421,171206,864242,220(Constant)

Sig. tStd. ErrorB

Unstandardized
Coefficients

Dependent Variable: 
Summer 1981 Water Use
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From the regression reported in table 3.2 in Hamilton
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Footnote for the previous figure

• There is heteroscedasticity if the variation of the 
residual (variation around a typical value) varies 
systematically with the value of one or more x-
variables

• The figure shows that the variation of the residual 
increses with increasing predicted y: ŷ

• Predicted Y (Ŷ) is in this case an index showing 
high average x-values

• When the variation of the residual varies 
systematically with the values of the x-variables 
like this, we conclude with heteroscedasticity
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Unstandardized Residual

-5000,00000
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7500,00000

10000,00000

112
152

236
384
358

54

482

477
490479
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435

491
494

496
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Box-plot of the 
residual shows 

•Heavy tails

•Many outliers

•Weakly positively 
skewed distribution

Will any of the 
outliers affect the 
regression? 
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The distribution seen from another angle
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Band-regression
• Homoscedasticity means that the median (and the 

average) of the absolute value of the residual, i.e.: 
median{IeiI}, should be about the same for all 
values of the predicted yi

• If we find that the median of IeiI for given 
predicted values of yi changes systematically with 
the value of predicted yi it indicates 
heteroscedasticity

• Such analyses can easily be done in SPSS
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Absolute value of ei (Based on regression in table 3.2 in Hamilton)
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Approximate band 
regression (cpr
figure 4.4 in 
Hamilton)
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Band regression in SPSS
• Start by saving the residual and predicted y from the 

regression
• Compute a new variable by taking the absolute value of 

the residual (Use “compute” under the “transform” menu)
• Then partition the predicted y into bands by using the 

procedure ”Visual bander” under the ”Transform” menu
• Then use ”Box plot” under ”Graphs” where the absolute 

value of the residual is specified as variable and the band 
variable as category axis
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Autocorrelation (1)

• Correlation among variable values on the same 
variable across different cases

(e.g. between i and i -1 )

• Autocorrelation leads to larger variance and biased 
estimates of the standard error - similar to 
heteroscedasticity

• In a simple random sample from a population 
autocorrelation is improbable
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Autocorrelation (2)
• Autocorrelation is the result of a wrongly specified 

model

• Typically it is found in time series and 
geographically ordered cases

• Tests (e.g. Durbin-Watson) is based on the sorting of 
the cases. Hence:

• A hypothesis about autocorrelation needs to specify 
the sorting order of the cases
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Durbin-Watson test (1)

 2

1
2

2

1

n

i i
i

n

i
i

e e
d

e











Should not be used for autoregressive models, i.e. 
models where the y-variable also is an x-variable, 
see table 3.2
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Durbin-Watson test (2)
• The sampling distribution of the d-statistic is 

known and tabled as  dL and dU (table A4.4 in 
Hamilton), the number of degrees of freedom is 
based on n and K-1

• Test rule: 
– Reject if d<dL

– Do not reject if d>dU

– If dL < d < dU the test is inconclusive

• d=2 means uncorrelated residuals
• Positive autocorrelation results in d<2
• Negative autocorrelation results in d>2 
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Daily water use, average pr month
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Ordinary OLS-regression where the 
case is month

,031-2,176,113-,247
CONSERVATION CAMPAIGN 

DUMMY

,027-2,234,021-,047PRECIPITATION IN INCHES

,0007,574,002,013
AVERAGE MONTHLY 

TEMPERATURE

,00038,035,1013,828(Constant)

Std. ErrorB

Sig.t
Unstandardized

Coefficients

Dependent Variable: AVERAGE 

DAILY WATER USE

Predictors: (Constant), CONSERVATION CAMPAIGN DUMMY, AVERAGE 
MONTHLY TEMPERATURE, PRECIPITATION IN INCHES
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Test of autocorrelation

,535,36045,312,327,572(a)1

Durbin-
Watson

Std. Error of 
the 

Estimate
Adjusted R 

SquareR SquareR

Dependent 
Variable: 
AVERAGE 
DAILY 

WATER USE

Predictors: (Constant), CONSERVATION CAMPAIGN DUMMY, AVERAGE 
MONTHLY TEMPERATURE, PRECIPITATION IN INCHES

N = 137, K-1 = 3

Find limits for rejection / acceptance of the null hypothesis of
no autocorrelation with level of significance 0,05 
Tip: Look up table A4.4 in Hamilton, p355
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Autocorrelation coefficient
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m-th order autocorrelation coefficient
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Residual ”Daily water use”, month
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Smoothing with 3 points
• Sliding 

average 

• ”Hanning”

• Sliding 
median
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Residual, smoothing once
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Residual, smoothing twice
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Residual, smoothing five times
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Consequences of autocorrelation
• Tests of hypotheses and confidence intervals are unreliable. 

Regressions may nevertheless provide a good description of 
the sample. Parameters are unbiased

• Special programs can estimate standard errors consistently
• Include in the model variables affecting neighbouring cases
• Use techniques developed for time series analysis (e.g.: 

analyse the difference between two points in time, y)
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SOS3003 
Applied data analysis for social 

science 
Lecture notes on 

Hamilton Ch 4 p109-137 
Regression criticism II 

Erling Berge
Department of sociology and political science

NTNU
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Analyses of models are based on 
assumptions

• OLS is a simple technique of analysis with very 
good theoretical properties. But

• The good properties are based on certain 
assumptions

• If the assumptions do not hold the good properties 
evaporates

• Investigating the degree to which the assumptions 
hold is the most important part of the analysis
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OLS-REGRESSION: assumptions

• I SPECIFICATION REQUIREMENT
• The model is correctly specified

• II GAUSS-MARKOV REQUIREMENTS
– (1) x is known, without stochastic variation
– (2) Errors have an expected value of 0 for all i

– (3) Errors have a constant variance for all i
– (4) Errors are uncorrelated with each other

(Ensures that the estimates are “BLUE”)

• III NORMALLY DISTRIBUTED ERROR TERM
• Ensures that the tests are valid
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Problems in regression analysis that 
cannot be tested

• If all relevant variables are included
• If x-variables have measurement errors
• If the expected value of the error is 0
• (This means that we are unable to check 

if the correlation between the error term 
and x-variables actually is 0 and is 
actually the same as the first point that we 
are unable to test if the model is correctly 
specified)
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The most important problems in regression 
analysis that can be tested

• Non-linear relationships

• Non-constant error of the error 
term (heteroscedasticity)

• Autocorrelation for the error term

• Non-normal error terms
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Heteroscedastisity

• Is present if the variance of the error term varies with the size of 
x-values 

• Predicted y is an indicator of the size of x-values (hence scatter 
plot of residual against predicted y)

• Heteroscedasticity (non-constant variance of error term) can 
arise from 
– Measurement error (e.g. y more accurate the larger x is)

– Outliers
– The wrong functional form 

– If i contain an important variable that varies with one or more x and 
y. The error term i is not independent of the x-es. Hence the Gauss-
Markov requirements 1 and 2 cannot be correct.
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Indicators of heteroscedastisity

• Inspection of the scatter plot of residual 
against predicted value of y

• Band regression of the scatter plot

An interesting option here is:

• Locally weighted / ”sliding” regression on 
the central part of the sample
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”Sliding”
adapted line 
by means of 
locally 
weighted 
OLS 
regression

The 
procedure is 
called  
LOESS (see 
next slide) 
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A footnote: SPSS explains

Fit Lines
• In a fit line, the data points are fitted to a line that usually does not pass 

through all the data points. The fit line represents the trend of the data. 
Some fit lines are regression based. Others are based on iterative 
weighted least squares.

• Fit lines apply to scatter plots. You can create fit lines for all of the 
data values on a chart or for categories, depending on what you select 
when you create the fit line.

Loess 
• Draws a fit line using iterative weighted least squares. At least 13 data 

points are needed. This method fits a specified percentage of the data 
points, with the default being 50%. In addition to changing the 
percentage, you can select a specific kernel function. The default 
kernel (probability function) works well for most data. 
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Autocorrelation

• Correlation among variable values on the same variable across different 
cases (e.g. between i and i -1 )

• Autocorrelation leads to larger variance and biased estimates of the 
standard error - similar to heteroscedasticity

• Autocorrelation is the result of a wrongly specified model

• Typically it is found in time series and geographically ordered cases. In 
a simple random sample from a population autocorrelation is 
improbable

• Tests (e.g. Durbin-Watson) is based on the sorting of the cases. Hence: 
hypotheses about autocorrelation need to specify the sorting order of the 
cases
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Non-normal residuals
• Imply that t- and F-tests cannot be used

• Since OLS estimates of parameters are easily affected by 
outliers, heavy tails in the distribution of the residual will 
indicate large variation in estimates from sample to sample

• We can test the assumption of normally distributed error 
term by inspecting the distribution of the residual, e.g. by 
inspecting
– Histogram, box plot, or quantile-normal plot

– There are also more formal tests (but not very useful) based on 
skewness and kurtosis 
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Unstandardized Residual
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Diagram of the residual shows: 

Heavy tails, many outliers, and weakly positively skewed 
distribution

BOX PLOT HISTOGRAM
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In the normal 
distribution the ratio 
between IQR and 
the standard 
deviation is 1.35 :

IQR/ SE = 1.35

IQR/1.35 = SE

Skewed distribution of the residual (1)
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Skewed distribution of the residual (2)

• Since the average of the residuals (ei) always equals 0, the distribution 
will be skewed if the median is unequal to 0 

• It is known that for the normal distribution the standard deviation (or 
the standard error) equals approximately IQR/1.35

• If the distribution of the residual is symmetric we can compare SEe to 
IQR/1.35. If

– SEe > IQR/1.35 the tails are heavier than the normal distribution

– SEe ≈ IQR/1.35 the tails are approximately equal to the normal distribution

– SEe < IQR/1.35 the tails are lighter than the normal distribution
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Quantile-
Normal plot 
of residual 
from 
regression 
in table 3.2 
in Hamilton
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-5 000

-2 500

0

2 500

5 000

7 500

10 000

O
b

se
rv

ed
 V

al
u

e

-3 000 -2 000 -1 000 0 1 000 2 000 3 000

Expected Normal Value

94

80
85

Normal Q-Q Plot of Unstandardized Residual

Case no is based on case sequence: so that 
no 94= case no 101, nr 85= case no 92 and 
no 80= case no 87
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Options if non-normality is found
• Test out if the right function has been used

• Test out if some important variable has been 
excluded
– If the model cannot be improved substantially, we may 

try transforming the dependent variable to symmetry

• Test out if lack of normality is caused by outliers 
or influential cases
– If there are outliers, transforming of the variable where 

the case is outlier may help
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Influence (1)
• A case (or observation) has influence if the 

regression result changes when the case is 
excluded

• Some cases have unusually large influence 
because of 
– Unusually large y-value (outliers)

– Unusually large value on an x-variable 

– Unusual combinations of variable values
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Influence (2)
• We can see if a case has influence by 

comparing regressions with and without a 
particular case. One may for example

• Inspect the difference between bk and bk(i)

where case no i has been excluded in the 
estimation of the last coefficient

• This difference measured relative to the 
standard error of  bk(i) is called DFBETASik
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DFBETASik

( )

( )

k k i
ik

e i

k

b b
DFBETAS

s

RSS




se(i) is the standard deviation of the residual when 
case no i has been exclude from the analysis RSSk is 
Residual Sum of Squares from the regression of xk

on all other x-variables

Fall 2009 © Erling Berge 2009 332

DFBETASik :

bk(i)
bk

One case may make a lot of difference 

outlier
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What is a large DFBETAS?
• DFBETASik is calculated for every independent variable 

for every case. We do not want to inspect all values for it
• Three criteria for finding large values we need to inspect 

are

– External scaling. lDFBETASikl > 2/ SQRT(n) 
– Internal scaling. Look for severe outliers in the box 

plot of DFBETASik : 
DFBETASik< Q1-3IQR 
Q3 + 3IQR < DFBETASik

– Gap in the distribution of DFBETASik

• None of the DFBETASik needs to be problematic

n
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DFBETA income Standardized DFBETA income
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DFBETAS for income in the 
regression in Hamilton, table 3.2
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Standardized DFBETA income Standardized DFBETA water80
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Sequence

no
Case 

nr
water81 water80 water7

9
educat retire peop81cpeop

91 98 1500 1300 1500 16 0 2 0

92 99 3500 6500 5100 14 0 6 0

93 100 1000 1000 2700 12 1 1 0

94 101 3800 12700 4800 20 0 5 0

95 102 4100 4500 2600 20 0 5 0

96 103 4200 5600 5400 16 0 5 -1

97 104 2400 2700 800 16 0 6 0

98 105 1600 2300 2200 14 0 4 0

99 107 2300 2300 3100 16 0 4 -2

Sequence in the data set and case no is not the same. 
Case no is fixed. Variable values.
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X: residual Inntekt i tusen

Y:  residual Vassforbruk sommar 1981

R Sq Linear = 0,07

Leverage plot for 
water use and 
income (see 
Hamilton p69-72 
on partial 
regression plots)

Look at the 
quantile-normal 
plot above
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Consequences of case with large influence

• If we discover cases with large influence we should not 
necessarily remove them from the analysis

• Report results both with and without the cases

• Take a careful look at influential cases, maybe there are 
measurement errors

• When influential cases are outliers their influence can be 
reduced by transformation

• Use robust regression not so easily affected as OLS 
regression
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Potential influence: leverage

• The potential for influence of a case from a 
particular combination of x-values is 
measured by the hat statistic hi

• hi varies from 1/n to 1. It has an average of  
K/n (K = # parameters)

• SPSS reports the centred hi

– i.e.   (hi – K/n), we may call this for hc
i
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What is a large value of leverage?
• As for DFBETAS different criteria can be 

suggested. They all depend on the sample 
size n
– If hi > 2K/n (or  hc

i > K/n) we find the ca 5% 
largest hi ; alternatively

• If max (hi) ≤ 0.2 there is no problem

• If 0.2 ≤ max (hi) ≤ 0.5 there is some risk for a 
problem

• If 0.5 ≤ max (hi) probably there is a problem
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Centered Leverage Value
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Max av hc
i er 

0.102

Centred leverage 
(hc

i) from the  
regression in 
table 3.2 in 
Hamilton
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The difference between influence and leverage

Figur 4.14 i Hamilton
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The leverage statistic is found in many other 
case statistics

– Variance of the i-th residual

– Standardized residual 
(*ZRESID in SPSS)

– Studentized residual 
(*SRESID in SPSS)

– And remember that the 
standard deviation of the 
residual is

1
i

i

e i

e
z

s h




( ) 1
i

i

e i i

e
t

s h




2var[ ] [1 ]i e ie s h 

/( )es RSS n K 
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Total influence: Cook’s Di

• Cook’s distance 
Di measure 
influence on the 
model as a 
whole, not on a 
specific  
coefficient as 
DFBETASik

 
2

i

i

1

where z  is the standardized 

residual

and h  is the hat statistic 

(leverage)

i i
i

i

z h
D

K h



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What is a large Di ?

• One might want to take a look at all
– Di > 1 or

– Di > 4/n these are about the 5% largest Di

• Even if a case has low Di it may still be the 
case that it affects the size of single 
coefficients (it has a large DFBETASik)
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Cook's Distance
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101Cook’s distance Di

from the regression 
in table 3.2 in 
Hamilton

Also see table 4.4 
(p133) in Hamilton
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Summarizing 

What can be done with outliers and cases with 

large influence? We can

• Investigate if data are erroneous. If data are wrong 
the case can be removed from the analysis

• Investigate if transformation to symmetry helps

• Report two equations: with and without cases with 
unreasonable large influence

• Get more data 
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Multicollinearity
• Means very high intercorrelations among x-variables
• Check if parameter estimates are correlated
• Check if tolerance (the part of the variation of x that is 

not shared with other variables) is less than say 0.1. If so 
there may be a problem

• VIF = variance inflation factor = 1/tolerance
• If multicollinearity is caused by squaring of variables or 

interaction terms it should not be seen as problematic
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Tolerance
• The amount of variation in a variable xk unique to that 

variable is called the tolerance of the variable
• Let R2

k be the coefficient of determination in the regression 
of xk on all the rest of the x-variables. The other x-variables 
explain the proportion R2

k of the variation in xk. 
• Then 1- R2

k is the unique variation: tolerance= 1- R2
k

• Perfect multicollinearity means that 
– R2

k = 1 and tolerance = 0

• Low values of tolerance make regression results less precise 
(larger standard errors)

Fall 2009 © Erling Berge 2009 350

Variance Inflation Factor (VIF)

 21
k

e e e
b

k kk k

s s s
SE VIF

RSS TSSR TSS
  



• The standard error of the regression coefficient bk

can be written

• 1/tolerance = 1/(1-R2
k) = VIF

• Other things being equal lower tolerance (larger 
VIF) for xk will give higher standard error for bk

[SE increase with a factor equal to square root of 
VIF]
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Indicators of multicollinearity

• The best indicators is tolerance or VIF (both are based 
on R2

k )
• Other indicators are

– Correlation among singe variables (not reliable)
– Inclusion/ exclusion of single variables give large changes 

in the effect of other variables
– Unexpected signs on the effects of some variable
– Standardized regression coefficients larger than1 or less 

than -1 
– Correlation among parameter estimates
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Dependent 
Variable: Summer 
1981 Water Use

Unstandardized
Coefficients t Sig. Collinearity Statistics

B Std. Error Tolerance VIF

(Constant) 242,220 206,864 1,171 ,242

Summer 1980 
Water Use

,492 ,026 18,671 ,000 ,675 1,482

Income in 
Thousands

20,967 3,464 6,053 ,000 ,712 1,404

Education in Years
-41,866 13,220 -3,167 ,002 ,873 1,145

head of house 
retired?

189,184 95,021 1,991 ,047 ,776 1,289

# of People 
Resident, 1981

248,197 28,725 8,641 ,000 ,643 1,555

Increase in # of 
People

96,454 80,519 1,198 ,232 ,957 1,045

Tolerance and VIF from regression in table 3.2 in Hamilton
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What is low tolerance?

When R2
k > 0,9 

tolerance is < 0,1 
and VIF > 10

Factor of 
multiplication for 
the standard error 
is the square root 
of VIF (ca 3.2 for 
R2

k = 0,9)

Square root of VIF
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When is multicollinearity a problem?
• It is not a problem if the reason is curvilinearity or interaction 

terms in the model. But in testing we need to take account of 
the fact that if VIF is high parameter estimates are imprecise 
(high standard errors). They are tested as a group by the F-
test

• If the reason is that two variables measure the same concept 
one of them should be dropped, or they can be combined in 
an index 

• It is a problem if we need estimates of the separate effects of 
two highly correlated variables (if a test of their joint effect is 
not sufficient)
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Summarizing (1)
• When errors are independent and identically normally 

distributed OLS estimates are as good or better than other 
possible estimates

• But the assumptions are rarely satisfied completely, we have 
to test the degree to which they are satisfied

• Many problems can be corrected if we learn about them
• Check early on if curvilinearity, outliers or 

heteroscedasticity are problems ( for example by use of 
scatter plots)
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Summarizing (2)
• Do more exact investigations using residual/predicted Y 

plots and leverage plots
– Curvilinearity (leverage plot, residual vs predicted Y plot)
– Heteroscedasticity (leverage plot, [absolute value of residual] 

against predicted Y plot)
– Non-normal residuals (quantile-normal plot, box-plot with analysis 

of median and IQR/1.35
– Influence (check DFBETAS and Cook’s D)
– When we do not find serious problems we can have more 

confidence in our conclusions
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SOS3003 
Applied data analysis for social 

science 
Lecture notes on 

Hamilton Ch 5 p145-273 
Fitting Curves 

Erling Berge
Department of sociology and political science

NTNU
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Fitting Curves
• A correctly specified model require that the function linking 

x-variables and y-variable is true to what really exist: is the 
relationship linear?

• Data can be inspected by means of band regression or 
smoothing

• The theory of causal impact can specify a non-linear 
relationship

• For phenomena that cannot be represented by a line we shall 
present some alternatives
– Curvilinear regression
– Non-linear regression
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Band regression
• Can be used to explore how the relationship among 

the variables actually appears

• If we can see a non-linear underlying trend of the 
data we must through transformations or use of 
curves find a form for the function better 
representing the relationship
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Pollution at different depths in sediments 
outside the coast of NH

• Pollution measured 
by the ratio  
chromium/iron at 
different depths of 
various  sediment 
samples

• Is the relationship 
linear? 
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Medians of 5 bands: rate of chromium/iron in 
sediments outside the coast of NH
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The relationship is obviously non-linear
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Transformed variables
• Using transformed variables makes a regression curvilinear. The 

transformation makes the original curve relationship into a linear 
relationship

• This is the most important reason for a transformation
• At the same time transformations may rectify several other types

of statistical problems (outliers, heteroscedsticity, non-normal 
errors)  

• Procedure: 
– Choose an appropriate transformation and make new trasnformed variables
– Do a standard regression analysis with the transformed variables
– To interpret the results one usually will have to transform back to the original 

measurement scale
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The linear model
1

0
1

K

i j j i i
j

y X  




  
• In the linear model we can transform both x- and 

y- variables without any consequences for the 
properties of OLS estimates of the parameters

• As long as the model is linear in the parameters 
OLS is a valid method
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Curvilinear Models

• Practically speaking this is regression with 
transformed variables

• We shall take a look at how different 
transformations provide different forms for 
the variable relations
– Semi-logarithmic curves
– Log-Log curves
– Log-reciprocal curves
– Polynomials (2 and 3 order)
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Semilog curves Fig 5.2 in Hamilton
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Log-log curves Fig 5.3 in Hamilton
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Log-reciprocal curves Fig 5.4 in Hamilton
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The horizontal lines give the value of 
y when x grows towards infinity: the 
asymptote for y
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Second order polynomials Fig 5.5 in Hamilton
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Third order polynomials Fig 5.6 in Hamilton
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Choice of transformation

• Scatter plot or theory may provide advice

• Otherwise: transformation to symmetry gives 
the best option

• The regression reported in table 3.2 in 
Hamilton proved to be problematic

• Regression with transformed variables can 
reduce the problems
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Choice of transformation in table 3.2 in Hamilton

X7* = ln (X5/X0)X7 = Relative change in #people

X6 = X5 – X0 (= # people in 1980)‏X6 = Change in # people 

X5*= ln(X5) provides approximate symmetryX5 = # people in 1981 

Transformations do not work for dummiesX4 = Pensioner  

Transformations are inappropriateX3 = Education 

X2*= X2
0.3 provides approximate  symmetry X2 = Water use 1980 

X1*= X1
0.3 provides approximate  symmetryX1 = Income

Y*=Y0.3 provides approximate symmetryY = Water use 1981
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Regression with transformed variables
Tab 5.2 in Hamilton

,0013,485,263,916Ln(people81/people80)

,0006,469,110,715Ln(# of people81)

,395,852,119,101Retired?

,024-2,257,016-,036Education in Years

,00021,508,029,626Wateruse800.3

,0003,976,130,516Income0.3

,0004,822,3851,856(Constant)

Sig. t
Std. 

ErrB
Dependent Variable: 
(Wateruse81)0.3
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Other consequences of the transformations

• Two cases with large influence on the coefficient for 
income (large DFBTAS) do not have such influence 
(fig 4.11 and 5.9)‏

• One case with large influence on the coefficient for 
water use in 1980 do not have that large influence 
(fig 4.12 and 5.10)‏

• Transformation to symmetrical distributions will 
often solve many problems – but not always
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Interpretation
• The model estimate now looks like this

0.3 0.3 0.3
1 2 3

5
4 5

0

1.856 0.516 0.626 0.036

0.101 0.715 ln( ) 0.916 ln( )

i i i i

i
i i

i

y x x x

x
x x

x

   

  

• The interpretation of the coefficients are not so 
straightforward any more. For example: the 
measurement units of the parameters have been 
changed

• The simplest way of interpreting is to use conditional 
effect plots
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Conditional effect plot 

• Should be used to study the relationship between 
the dependent variable and one x-variable with the 
rest of the x-variables given fixed values

• Typically we are interested in the relationship x-y
when the other variables are given values that
– Maximizes y
– Are averages values of of the x-variables
– Minimizes y 
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,2321,19880,51996,454Increase in # of People

,0008,64128,725248,197# of People Resident, 1981

,0471,99195,021189,184head of house retired?

,002-3,16713,220-41,866Education in Years

,0006,0533,46420,967Income in Thousands

,00018,671,026,492Summer 1980 Water Use

,2421,171206,864242,220(Constant)‏

Sig.t Std. ErrorB

Unstandardized
Coefficients

Dependent Variable: Summer 
1981 Water Use

Example based on the regression in table 3.2 in Hamilton
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To produce conditional effect plot it is useful to have a table 
of minimum, maximum and average variable values

3,11101496# People living in 1980

-,043-3496Relative increase in # of people

3,07101496# of people resident, 1981

,2910496Head of household retired?

14,00206496Education in years

23,081002496Income in thousands

2732,0612700200496Summer 1980 water use

2298,3910100100496Summer 1981 water use

MeanMaximumMinimumN
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The equation

• Estimated Y = 242,22 + 0,492X1 + 20,967X2 -
41,866X3 + 189,184X4 + 248,197X5 + 96,454X6

• Maximizing the effect of X1 on Y require 
maximum of X2 , X4 , X5 , X6 and minimum of X3

• Average values of the effect of X1 on Y is 
obtained by inserting average values of X2 , X3 , 
X4 , X5 , X6

• Minimizing the effect of X1 on Y require 
minimum of X1 , X2 , X4 , X5 , X6 and maximum 
of X3
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Y = 242.22 + 0.492X + 20.9671 - 41.86618 + 189.1840 + 248.1971 + 96.4540
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When x is dummy coded

• Estimated Y = 242,22 + 0,492X1 + 20,967X2 -
41,866X3 + 189,184X4 + 248,197X5 + 96,454X6

• Estimated Y = constant + 189,184X4

– X4 can take the values of 0 or 1

X4=0 X4=1
Y = constant

Y = constant + 189,184
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Water usage according to income controlled for the 
effect of other variables
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y0.3=1.856+0.626(2732)0.3-0.036(14)+0.101(0.294)+0.715ln(3.07)+0.916(ln(3.07)-ln(3.11))+0.516(x)0.3

Relationship when other variables 
have average values 

Fig 5.11 Hamilton
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Which plots might be of interest?

y0.3=(1.856+0.626(200)0.3-0.036(20)+0.101(0)+0.715ln(1)+0.916(ln(1)-ln(10))+0.516(x)0.3)
y0.3=(1.856+0.626(12700)0.3-0.036(6)+0.101(1)+0.715ln(10)+0.916(ln(10)-ln(1))+0.516(x)0.3)
y0.3=(1.856+0.626(2732)0.3-0.036(14)+0.101(0.29)+0.715ln(3.07)+0.916(ln(3.07)-ln(3.11))+0.516(x)0.3)

• The relationship between water usage and income 
controlled for the effect of other variables
– Those minimizing water usage
– Those maximizing water usage
– Average values 

1

2

3
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Comparing three types of usage
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Relationship between water usage and income Fig 5.12 in Hamilton
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The role of the constant in the plot
• The only difference between the three curves is 

the constant
– In the maximum curve (konst) = 14.046
– In the minimum curve (konst) = 4.204
– In the average curve (konst) = 8.507

 0.3 0.3
10.516i iy konst x 

• The effect of income varies with the value of (konst)
• When we transform dependent variable all relationships 

become interaction effects
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Comparing effects
• For some relationships the standardized regression 

coefficient can be used to compare effects, but it is 
sensitive for biased estimates of the standard error

• A more general method is to compare conditional 
effect plots where the scaling of the y-axis is kept 
constant 
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Non-linear models
• If we do not have a model that is linear in the 

parameters other techniques than OLS are needed 
to estimate the parameters

• One may find two types of arguments for such 
models
– Theory about the causal mechanism may say so
– Inspection of the data may point towards one particular 

type of model
• We shall take a look at 

– Exponential models 
– Logistic models
– Gompertz models
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Exponential growth and decay 
Fig 5.14 in Hamilton
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Negative exponential curves Fig 5.15 in Hamilton
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806040200
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To-term exponential curves Fig 5.16 in Hamilton
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Logistic models
• The logistic function is 

written
• As x grows towards infinity 

y will approach 
• When x declines towards 

minus infinity y will 
approach 

• Logistic models are 
appropriate for many 
phenomena
– Growth of biological 

populations
– Scattering of rumours
– Distribution of illnesses

 1 exp
y

x




  
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Logistic curves Fig 5.17 in Hamilton
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•  determines where growth starts 
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Logistic probability model
• If it is determined that  ==1 y will vary between 0 and 1 

as x goes from minus infinity to plus infinity
• Logistic curves can then be used to model probabilities

 1 expi
i

y
x 


  

 
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Gompertz curves
• Gompertz curves are sigmoid curves like the logistic, but 

growth increase and growth reduction occur at different 
rates. Hence they are not symmetric

xey e
    

• Parameters  and  have the same interpretation 
as in the logistic model
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Gompertz curves Fig 5.18 Hamilton
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Estimation of non-linear models 

• The criterion of fit is still minimum RSS
• It is uncommon to find analytical expressions for 

the parameters. One has to guess at a start value 
and go through several iterations to find which 
parameter value will give minimum RSS

• Good starting values are as a rule necessary, and 
everything from theory to inspection of data are 
used to find them
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Per cent women with at least 1 child according to the woman’s 
age and year of birth (England og Wales)‏

-----89 86 -45 

----90 89 86 78 40 

---83 88 87 83 76 35 

--68 75 82 82 75 67 30 

-39 45 53 60 59 48 39 25 

11 13 18 19 17 13 9 7 20 

0000000015 

19651960195519501945194019301920
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Estimating Gompertz-models for cohorts (1)‏

15,00 20,00 25,00 30,00 35,00 40,00

0,00

20,00

40,00

60,00

80,00
% FEMALE COHORT WITH 
>=1 CHILD
WOMEN'S AGE

Predicted Values
WOMEN'S AGE

1920 cohort, observed and 
estimated values:

Y= 79.8exp(-461.2exp(-0.26x))‏

Y= per cent with at least 1 child

X= age
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Estimating Gompertz-models for cohorts (2)‏
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Y= 79.8exp(-461.2exp(-0.26x))‏
Y= 90.4exp(-468.1exp(-0.28x))‏

Y= per cent with at least 1 child

X= age
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Model estimation and fit
• To evaluate a theoretically developed model
• To predict y within or outside the observed range of 

variation for x
• Substantial or comparative interpretation of the 

parameters of the model
– On cohorts that are not finished with their births (thus 

predicting outside the observed range of x)‏
– We can use the model to compare parameter values of 

different cohorts

Fall 2009 © Erling Berge 2009 402

Parameter interpretation 
Table 5.6 Hamilton

0.1860.388.91955

0.23144.987.51950

0.28468.190.41945

0.31942.089.11940

0.27538.086.51930

0.26461.279.81920

 = growth speed = ?= upper limitCohort
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Birth rates in Sunndal, Meråker, Verran, and Rana 
1968-71

• Estimated with a 
Hadwiger function

• Ref.:  Berge, Erling. 
1981. The Social 
Ecology of Human 
Fertility in Norway 
1970. Ph.D. 
Dissertation. 
Boston: Boston 
University. 
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Conclusions of chapter 5 (1)‏

• Data analysis often starts with linear models. They are the 
simplest.

• Theory or exploratory data analysis (band regression, 
smoothing) can tell us if curvilinear or non-linear models 
are needed

• Transformation of variables give curvilinear regression. 
This can counteract several problems: 
– Curvilinear relationships
– Case with large influence
– Non-normal errors
– Heteroscedasticity 
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Conclusions of chapter 5 (2)
• Non-linear regression use iterative procedures to 

find parameter estimates

• The procedures need initial values and are  often 
sensitive for the initial values

• The interpretation of the parameters may be 
difficult. Graphs showing the relationship for 
different parameter values will provide valuable 
help for the interpretation 
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Robust Regression
• Has been developed to work well in situations 

where OLS breaks down. Where the OLS 
assumptions are satisfied robust regression are not 
as good as OLS, but not by very much

• Even if robust regression is better suited for those 
who do not want to put much effort into testing the 
assumptions, it is so far difficult to use

• Robust regression has focused on residuals with 
heavy tails (many cases with high influence on the 
regression)
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Regression of mortality on air pollution
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Y=918.4+
7.97ln(air pollution)
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Robust regression of mortality on air pollution
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Figure 6.2 
Hamilton

OLS: 

Y=918.4+

7.97ln(air pollution)

Robust Regression: 

Y= 891.7+19.46ln(air pollution)
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Robust regression and SPSS
• SPSS do not have a particular routine that 

performs robust regression
• It can possibly be done within the Generalized 

linear models procedure <but I have not tested it 
our>

• It can be done by weighted OLS regression, but 
then it is required that we make the weight 
functions and go through the iterations one by one 
including computation of weights every time

• This procedure will be outlined below
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ROBUST AND RESISTANT
• RESISTANT methods are not affected by small errors 

or changes in the sample data

• ROBUST methods are not affected by small deviations 
from the assumptions of the model

• Most resistant estimators are also robust in relation to 
the assumption about normally distributed residuals

•

• OLS  is neither ROBUST nor RESISTANT
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Outliers is a problem for OLS
Outliers affect the estimates of
• Parameters
• Standard errors (standard deviation of parameters)
• Coefficient of determination
• Test statistics
• And many other statistics
Robust regression tries to protect against this by giving
less weight to such cases,  
not by excluding them 
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Protection against NON-NORMALE 
residuals

Robust methods can help when
• the tails in the distribution of the residuals 

are heavy, i.e. when it is too many outliers 
compared to the normal distribution

• Unusual X-values have leverage and may 
cause problems

But for other causes of non-normality 
robust methods will not help
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Estimation methods for robust regression

• M-estimation (maximum likelihood) minimizes a 
weighted sum of the residuals. This can be 
approximated by the weighted least squares method 
(WLS)

• R-estimation (based on rank) minimizes a sum where a 
weighted rank is included. The method is more difficult 
to use than M-estimation

• L-estimation (based on quantiles) uses linear functions 
of the sample order statistics (quantiles) 
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IRLS-
Iterated Reweighted Least Squares

M-estimation by means of IRLS needs   
1. Start values from OLS. Save the residuals
2. Use OLS residuals to find weights. Larger residuals 

gives less weight 
3. Find new parameter values and residuals with  WLS
4. Go to step 2 and find new weights from the new 

residuals, go on to step 3 and 4, until changes in the 
parameters become small 

Iteration: to repeat a sequence of operations
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IRLS
• IRLS is in theory equivalent to M-estimation

• To use the method we need to compute 

• Scaled residuals, ui , and a

• Weight function, wi ,that gives least weight to the 
largest residuals
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Scaling of residuals I

• Scaled residual ui

– s is the scale factor and ei residual

• The scale factor in OLS is the estimate of the 
standard error of the residual:   nb! se is not 
resistant 

• A resistant alternative is based on MAD, 
"median absolute deviation"

e

RSS
s

n K




 i iMAD median e median e | |

i
i

e
u

s

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Scaling of residuals II

The scale factor (standard error of the distribution) 
Using a resistant estimate will be 

• s = MAD/ 0.6745 = 1.483MAD
and the scaled residual

• ui = [ei / s ] = (0.6745*ei)/MAD
In a normal distribution s= MAD/ 0.6745 will estimate 
the standard error correctly like se
In case of non-normal errors s= MAD/ 0.6745 will be better. 

This is a resistant estimate, se is not resistant 

 i iMAD median e median e | |
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Weight functions I

• Properties is measured in relation to OLS on 
normally distributed errors. 

• The method should be “almost as good” as 
OLS on normally distributed errors and 
much better when the errors are non-normal

• Properties are determined by a “calibration 
constant” (c in the formulas)
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Weight functions  II
• OLS-weights: wi = 1 for all i 
• Huber-weights: weights down when the scaled  residual 

is larger than c, c=1,345 gives 95% of the efficiency of 
OLS on normally distributed errors

• Tukey’s bi-weighted estimates get 95% of the efficiency 
of OLS on normally distributed errors by gradually 
weighting down scaled errors until |ui| ≤ c = 4.685  and by 
dropping cases where the residual is larger  
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Huber-weights
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Tukey weights
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• Tukey weighting in IRLS is sensitive for start 

values of the parameters (one may end up at local 
minima) 
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Standard errors and tests in IRLS

• The WLS program cannot estimate standard 
errors and test statistics correctly by IRLS

• A procedure that works is described by 
Hamilton on page 198-1999
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Use of Robust Estimation
• If OLS and Robust estimates are different it means that 

outliers have influence on the OLS results making them 
unreliable. Results cannot be trusted

• Robust predicted values will better portray the bulk of the 
data

• Robust residuals will better at discovering which cases are 
unusual 

• Weights from the robust regression will show which cases 
are outliers

• OLS and RR can support each other
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Fig 6.9 Hamilton: OLS and RR on untransformed 
data
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Fig 6.10 Hamilton: OLS and RR on untransformed 
data when two outliers are removed

0,00 30,00 60,00 90,00 120,00 150,00

RELATIVE HC POLLUTION POTENTIAL

800,00

900,00

1000,00

1100,00

AG
E-

AD
JU

ST
ED

 M
O

RT
AL

IT
Y/

10
0K

SanJose

SanDiego

R Sq Linear = 7,116E-4

robust
Mortality 
regressed 
on air 
pollution



Ref.: http://www.svt.ntnu.no/iss/Erling.Berge/ Fall 2009

© Erling Berge 2009 214

Fall 2009 © Erling Berge 2009 427

RR do not protect against leverage
• RR with M-estimation protects against unusual y-values 

(outliers) but not necessarily against unusual x-values 
(leverage)

• Efforts to test and diagnose are still needed 
(heteroscedasticity is still a problem for IRLS)

• Studies of the data and transformation to symmetry will 
reduce the risk of problems appearing

• No method is “safe” if it is used without forethought and 
diagnostic studies of data 
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Robust Multippel Regresjon

AVG RELATIVE HUMIDITY, %X13

% FAMILIES WITH INCOME<$3000 (negative reciprocal root)X12

% WHITE COLLAR EMPLOYMENTX11

AVG. JULY TEMPERATURE, FX10

PEOPLE PER SQUARE MILE (natural log)X9

% SOUND HOUSING UNITSX8

% 65 AND OVERX7

POPULATION PER HOUSEHOLDX6

% NON-WHITE (square root)X5

MEDIAN EDUCATION OF POP 25+X4

AVG. JANUARY TEMPERATURE, FX3

AVG. YEARLY PRECIP. INCHESX2

RELATIVE HC POLLUTION POTENTIAL (natural log)X1
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Multiple OLS regression with transformed variables:
effect of transformation
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OLS with backward elimination gives

,0006,2154,39827,335SQRT_pct_non_white

,005-2,8956,204-17,958MEDIAN EDUCATION OF POP 25+

,000-4,228,504-2,132AVG. JANUARY TEMPERATURE, F

,0013,677,6402,352AVG. YEARLY PRECIP. INCHES

,0003,7684,63617,469LN_hc_pollution

,00011,92982,674986,261(Constant)

Sig.tStd. 
Error

BDependent Variable: 
AGE-ADJUSTED MORTALITY/100K

• Robust regression gives predicted y:

• Y= 1001.8+17.77x1i+2.32x2i-2.11x3i-19.1x4i+26.2x5i
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Multiple OLS regression with transformed variables
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Four estimates of the relationship 
mortality – air pollution

17.7717.475 variables

19.467.971 variable
RobustOLS

• In the five-variable model there are new cases  
with influence on the line of regression 

• Removing the 5 cases that have the highest  
leverage parameter (hi) do not give substantial 
changes in the coefficients

• Note that in RR the 
bivariate regression 
comes pretty close to the 
result of the multivariate 
regression

Effect of air pollution
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Robust Regression vs
Bounded Influence Regression

• Robust Regression protect against the effect 
of outliers (unusual y-values) if these do not 
go together with unusual x-values

• Bounded Influence Regression is designed 
to protect against influence from unusual 
combinations of x-values
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BI - Bounded Influence Regression

• BI-methods are made to limit the influence 
of high leverage cases (large hi = high 
leverage)

• The simplest way of doing this is to modify 
the Huber-weights or Tukey-weights in the 
IRLS procedure for RR (robust regression) 
with a factor based on the leverage statistic
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Bounded influence: modification of weights
• Expand the weight function with a weight based on the 

leverage statistic  hi

• wH
i = 1 if hi ≤ cH

• wH
i = (cH/ hi)if hi > cH

• cH is often set to the 90% percentile in the distribution of hi

• Then the IRSL weight becomes wi wH
i where wi is either 

the Tukey- or Huber-weight that changes from iteration to 
iteration while wH

i is constant 
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Bounded influence as a diagnostic tool
• Estimation of standard errors and test statistics 

becomes even more complicated than for the M-
estimators mentioned above

• We can use BI estimates as a descriptive tool to 
check up on other estimates

• One (somewhat) extreme example: PCB pollution 
in river mouths in 1984 and 1984 (Hamilton table 
6.4)
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Fig 6.15 and 6.16 Hamilton
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Fig 6.17 Hamilton
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Conclusions
• When data have many outliers robust methods will have better 

properties than OLS
– They are more effective and give more accurate confidence intervals and tests of 

significance  

• Robust regression can be used as a diagnostic tool
– If OLS and RR agree we can have more confidence to the OLS 

results
– If they disagree we will 

• Know that a problem exist
• Have a model that fits the data better and identifies the outliers 

better

• Robust methods does not protect against problems that are due to
curvilinear or non-linear models, heteroscedasticity, and autocorrelation 
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LOGIT REGRESSION

• Should be used if the dependent variable (Y) is 
a nominal scale

• Here it is assumed that Y has the values 0 or 1
• The model of the conditional probability of Y, E[Y 

| X], is based on the logistic function 
(E[Y | X] is read “the expected value of Y given 
the value of X”)

• But
Why cannot E[Y | X] be a linear function also in 
this case?
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The linear probability model: LPM

• The linear probability model (LPM) of 
Yi when Yi can take only two values (0, 
1) assumes that we can interpret E[Yi | 
X] as a probability

• E[Yi | X] = b0 + j bj xji = Pr[Yi =1] 

• This leads to severe problems:
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Are the assumptions of a linear regression 
model satisfied for the LPM?

• One assumptions of the LPM is that  the residual, ei
satisfies the requirements of OLS

• The the residual must be either 
– ei = 1 – (b0 + j bj xji) or 
– ei = 0 – (b0 + j bj xji) 

• This means that there is heteroscedasticity (the residual 
varies with the size of the values on the x-variables)

• There are estimation methods that can get around this 
problem (such as 2-stage weighted least squares method)

• One example of LPM:
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OLS regression of a binary dependent variable on 
the independent variable ”years lived in town”

,000-3,694,002-,008YEARS LIVED IN TOWN

,00010,147,059,594(Constant)

Sig.t
Std. 
ErrorB

Dependent Variable: 
SCHOOLS SHOULD CLOSE

15237,529Total

,22815134,418Residual

,000(a)13,6483,11113,111Regression

Sig.F
Mean
Squaredf

Sum of
Squares

ANOVA tabell

The regression looks OK in these tables
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0,00 20,00 40,00 60,00 80,00 100,00

YEARS LIVED IN WILLIAMSTOWN

0,00

0,20

0,40

0,60

0,80

1,00

SC
HO

OL
S 

SH
OU

LD
 C

LO
SE

R Sq Linear = 0,083

Here the predicted y is 
below 0 for reasonable 
values of x

Scatter plot with line of regression. Figure 7.1 Hamilton
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Conclusion: LPM model is wrong 
• The example shows that for reasonable values of the x 

variable we can get values of the predicted y where

E[Yi | X] >1 or E[Yi | X] < 0, 

• For this there is no remedy

• LPM is for substantial reasons a wrong model

• We need a model where we always will have 

0 ≤ E[Yi | X] ≤ 1 

• The logistic function can provide such a model
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The logistic function
The general logistic function is written
• Yi = /(1+*exp[-Xi]) + i

 provides an upper limit for Y 
this means that 0<Y< 
 determines the horizontal point for rapid growth 
If we determines that  = 1 and  = 1 
One will always find that

• 0 < 1/(1+exp[-Xi]) < 1
The logistic function will for all values 
of x lie between 0 and 1 
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Logistic curves for different 

64020020

1

0.8

0.6

0.4

0.2

0

y= 1
1+exp(-0.5x)

y= 1
1+exp(-0.25x)

y= 1
1+exp(-0.1x)

Horizontal line through ( )0, 1

 determines how rapidly the curve grows 
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MODEL (1)

Definitions:
• The probability that person no i shall have the value 

1 on the variable Y will be written Pr(Yi =1). Then 
Pr(Yi ≠ 1) = 1 - Pr(Yi=1) 

• The odds that person no i shall have the value 1 on 
the variable Y, here called Oi, is the ratio between 
two probabilities 

   
 

Pr 1
1

1 Pr 1 1
i i

i i
i i

y p
y

y p


  

  
O
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MODEL (2)
Definitions:

• The LOGIT, Li , is the natural logarithm of the 
odds, Oi , for person no i:

Li = ln(Oi)

• The model assumes that Li is a linear function of 
the explanatory variables xj , 

• i.e.:

• Li = 0 + j j xji , where j=1,..,K-1, and  i=1,..,n 
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MODEL (3)

• Let X = (the collection of all xj ), then the 
probability of Yi = 1 for person no i 

   
1

0
1

exp( )1
Pr( 1) X

1 exp 1 exp( )

where 

i
i i

i i

K

i j ji
j

L
y E y

L L

L X




   
  

   

|

The graph of this relationship is useful for the 
interpretation what a change in x means
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MODEL (4)
In the model Yi = E[Yi | X] + i the error is either
• i = 1 - E[Yi | X] with probability E[Yi | X] 

(since Pr(Yi = 1) = E[Yi | X] ), 

or the error is
• i = - E[Yi | X] with probability 1 - E[Yi | X]

• Meaning that the error has a distribution known as the 
binomial distribution with 
pi = E[Yi | X] 
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Estimation by the ML method
• The method used to estimate the parameters in the 

model is Maximum Likelihood
• The ML-method gives us the parameters that 

maximize the Likelihood of finding just the 
observations we have got

• This likelihood we call L
• The criterion for choosing regression parameters is 

that the likelihood becomes as large as possible
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Maximum Likelihood (1)
• The Likelihood equals the product of the 

probability of each observation. For a 
dichotomous variable where Pr(Yi = 
1)=Pi this can be written

   1

1
1 ii

n YY
i ii

P P



 
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Maximum Likelihood (2)

• It is easier to maximize the likelihood L

if one uses the natural logarithm of L :

      
1

ln ln 1 ln 1
n

i i i i
i

y P y P


   

• The natural logarithm of L is called the 

LogLikelihood, It may be called LL. 

• LL has a central role in logistic regression. 
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Maximum Likelihood (3)
• The LogLikelihood LL will always be 

negative
• Maximizing LL is the same as 

minimizing the positive 
LogLikelihood; i.e. minimizing -LL 

• Finding parameter values that 
minimizes - LL can be done only by 
”trial and error”, using an iterative 
procedure
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Iterative estimation

-,041,460195,2674

-,041,460195,2673

-,041,455195,2692

-,034,376195,6841Step

-,276209,2120Initial 

livedConstant

Coefficients  

-2 Log 
LikelihoodIteration

From Hamilton 
Tabell 7.1

Note the column titled -2 LogLikelihood
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Footnotes to the table

• Step 0: Point of departure is a model with a 
constant and no variables

• Iterative estimation
– Estimation ends at iteration no 4 since the parameter 

estimates changed less than 0.001

• The Wald statistic that SPSS provides equals the 
square of the “t” that Hamilton (and STATA) 
provides (Wald = t2)
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Logistic model instead of LPM

1,584,08013,069,263,460Constant

,960,001111,399,012-,041Lived in town

Exp(B)Sig.dfWaldS.E.B
Dependent: 
Schools should close

,000-3,694,002-,008YEARS LIVED IN TOWN

,00010,147,059,594(Constant)

Sig.tStd. ErrorB
Dependent Variable: 
SCHOOLS SHOULD CLOSE

OLS regression (slide 6 above)

Logistic regression 
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0,00 20,00 40,00 60,00 80,00 100,00

0,00000

0,20000

0,40000

0,60000

0,80000

1,00000
SCHOOLS 
SHOULD CLOSE
YEARS LIVED IN 
WILLIAMSTOWN

Predicted 
probability
YEARS LIVED IN 
WILLIAMSTOWN

The linear model 
is entered beside 
the logistic 

Fig 7.4 Hamilton



Ref.: http://www.svt.ntnu.no/iss/Erling.Berge/ Fall 2009

© Erling Berge 2009 231

Fall 2009 © Erling Berge 2009 461

TESTING

Two tests are useful

• (1) The Likelihood ratio test 
– This can be used analogous to the F-test

• (2) Wald test  
– The square root of this can be used 

analogous to the t-test
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Interpretation (1)
• The difference between the linear model and the 

logistic is large in the neighbourhood of 0 and 1 
• LPM is easy to interpret: Yi = 0 when x1i=0, and 

when x1i increases with one unit Yi increases with 1
units

• The logistic model is more difficult to interpret. It is 
non-linear both in relation to the odds and the 
probability
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ODDS and ODDS RATIOS

• The Logit, Li, ( Li= 0 + j j xji ) is defined as the
natural logarithm of the odds 

This means that

• odds  = Oi (Yi=1) = exp(Li) = eLi

and

• Odds ratio= Oi (Yi=1| Li’) / Oi (Yi=1| Li)

– where Li’ and Li have different values on only one 
variable x.j.
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Interpretation (2)
• When all x equals 0 then Li = 0 This means that the odds 

for yi = 1 in this case is exp{0}

• If all x-variables are kept fixed (they sum up to a constant) 
while x1 increases with 1, the odds for yi = 1 will be 
multiplied by exp{1} 

• This means that it will change with 

100(exp{1} – 1) %

• The probability Pr{yi = 1} will change with a factor affect 
by all elements in the logit



Ref.: http://www.svt.ntnu.no/iss/Erling.Berge/ Fall 2009

© Erling Berge 2009 233

Fall 2009 © Erling Berge 2009 465

Logistic regression: assumptions

• The model is correctly specified
• The logit is linear in its parameteres

• All relevant variables is included

• No irrelevant variables are included

• x-variables are measured without error 

• Observations are independent

• No perfect multicollinearity

• No perfect discrimination

• Sufficiently large sample
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Assumptions that cannot be tested

• Model specification
• All relevant variables are included

• x-variables are measured without error 

• Observations are independent

Two will be tested automatically. 

If the model can be estimated there is

• No perfect multicollinearity and

• No perfect discrimination 
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LOGISTIC REGRESSION
Statistical problems may be due to

• Too small a sample

• High degree of multicollinearity
– Leading to large standard errors (imprecise estimates)

– M is discovered and treated in the same way as in OLS 
regression 

• High degree of discrimination (or separation) 
– Leading to large standard errors (imprecise estimates)

– Will be discovered automatically by SPSS
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Discrimination/ separation
• Problems with discrimination appear when we for a given 

x-value get almost perfect prediction of the y-value (nearly 
all with a given x-value have the same y-value)

• In SPSS it may produce the following message:

• The NOMREG procedure continues despite the above warning(s). 
Subsequent results shown are based on the last iteration. Validity of 
the model fit is uncertain.

• There is possibly a quasi-complete separation in the data. Either the 
maximum likelihood estimates do not exist or some parameter 
estimates are infinite.

Warnings
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Discrimination in Hamilton table 7.5

• Odds for weaker requirements is 
44/202 = 0,218 among women 
without small children 

• Odds for weaker requirement is 
0/79 = 0 among women with 
small children 

• Odds rate is 0/0,218 = 0 hence 
exp{bwoman}=0 

• This means that bwoman = minus 
infinity 

044Weaker 
requireme
nts OK

79202No 
weaker 
requireme
nts

Women 
with 
small 
children

Women 
without 
small 
children
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Logistic regression

• If the assumptions are satisfied logistic 
regression will provide normally 
distributed, unbiased and efficient (minimal 
variance) estimates of the parameters
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Definitions:
• The probability that person no i shall have the value 

1 on the variable Y will be written Pr(Yi =1). Then 
Pr(Yi ≠ 1) = 1 - Pr(Yi=1) 

• The odds that person no i shall have the value 1 on 
the variable Y, here called Oi, is the ratio between 
two probabilities 

   
 

Pr 1
1

1 Pr 1 1
i i

i i
i i

y p
y

y p


  

  
O

Definitions I
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Definitions II
Definitions:

• The LOGIT, Li , is the natural logarithm of the 
odds, Oi , for person no i:

Li = ln(Oi)

• The model assumes that Li is a linear function of 
the explanatory variables xj , 

• i.e.:

• Li = 0 + j j xji , where j=1,..,K-1, and  i=1,..,n 
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Logistic regression: assumptions

• The model is correctly specified
• The logit is linear in its parameters

• All relevant variables are included

• No irrelevant variables are included

• x-variables are measured without error 

• Observations are independent

• No perfect multicollinearity

• No perfect discrimination

• Sufficiently large sample
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Assumptions that cannot be tested

• Model specification
• All relevant variables are included

• x-variables are measured without error 

• Observations are independent

Two will be tested automatically. 

If the model can be estimated there is

• No perfect multicollinearity and

• No perfect discrimination 
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LOGISTIC REGRESSION
Statistical problems may be due to

• Too small a sample

• High degree of multicollinearity
– Leading to large standard errors (imprecise estimates)

– Multicollinearity is discovered and treated in the same way as 
in OLS regression 

• High degree of discrimination (or separation) 
– Leading to large standard errors (imprecise estimates)

– Will be discovered automatically by SPSS
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Assumptions that can be tested
• Model specification

• logit is linear in the parameters
• no irrelevant variables are included

• Sufficiently large sample 
• What is “sufficiently large” depends on the number 

of different patterns in the sample and how cases are 
distributed across these

• Testing implies an assessment of whether  
statistical problems leads to departure from 
the assumptions
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LOGISTIC REGRESSION: TESTING (1)

Two tests are useful

• (1) The Likelihood ratio test 
– This can be used analogous to the F-test

• (2) Wald test  
– The square root of this can be used 

analogous to the t-test
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LOGISTIC REGRESSION: TESTING (2)

• The LikeLihood Ratio test :
• The ratio between two Likelihoods equals the 

difference between two LogLikelihoods
• The difference between the LogLikelihood (LL) 

of two nested models, estimated on the same 
data, can be used to test which of two models fits 
the data best, just like the F-statistic is used in 
OLS regression

• The test can also be used for singe regression 
coefficients (single variables). In small samples it 
has better properties than the Wald statistic
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LOGISTIC REGRESSION: TESTING (3)

The LikeLihood Ratio test statistic 

• 
 = -2[LL(model1) - LL(model2)]

will, if the null hypothesis of no difference between 
the two models is correct, be distributed 
approximately (for large n)  as the chi-square 
distribution with number of degrees of freedom 
equal to the difference in number of parameters in 
the two models (H)
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Example of a Likelihood Ratio test
• Model 1: just constant
• Model 2: constant plus one variable

• 
 = -2[LL(model1) - LL(model2)]
= -2LL(model1) + 2LL(model2)

• Find the value of the ChiSquare and the 
number of degrees of freedom

• e.g.: LogLikelihood (mod1) = 209,212/(-2)
• LogLikelihood (mod2) = 195,267/(-2) 195,267

195,267

195,269

195,684

209,212

From
Tab 7.1:
-2 Log 

Likelihood
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LOGISTIC REGRESSION: TESTING (4)

The Wald test
• The Wald (or chisquare) test statistic provided by SPSS = 

t2 = (bk/ SE(bk))2 (where t is the t used by Hamilton) can 
be used for testing single parameters similarly to the t-
statistic of the OLS regression

• If the null hypothesis is correct, t will (for large n)  in 
logistic regression be approximately normally distributed

• If the null hypothesis is correct, the Wald statistic will (for 
large n) in logistic regression be approximately chisquare
distributed with df=1
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Excerpt from Hamilton Table 7.2

5,649,18411,7681,3021,731Constant

8,784,000121,919,4642,173Hsc

3,347,00916,739,4651,208Contam

,847,06513,404,090-,166Educ

,955,00219,698,015-,046Lived

Exp(B)Sig.dfWaldS.E.BVariables

149,3825

149,3824

149,3823

149,4662

152,5341

209,2120

-2 Log likelihoodIterasjon
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Confidence interval for parameter estimates

• Can be constructed based on the fact that the 
square root of the Wald statistic approximately 
follows a normal distribution with 1 degree of 
freedom 

• bk - t*SE(bk) < k < bk + t*SE(bk) 
where t is a value taken from the table of the  
normal distribution with level of significance 
equal to 
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Can be constructed based on the t-distribution 
(1)

• If a table of the normal distribution is missing one 
may use the t-distribution since the t-distribution is 
approximately normally distributed for large n-K (e.g. 
for n-K > 120)
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Excerpt from Hamilton Table 7.3

18,060,07113,2591,6032,894Constant

,108,02614,964,999-2,226nodad

,511,23611,406,566-,671kids

,950,9261,009,557-,052female

11,223,000122,508,5102,418hsc

3,604,00817,094,4811,282contam

,814,02714,887,093-,206educ

,954,00617,550,017-,047livedStep 1

Exp(B)Sig.dfWaldS.E.B
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More from Hamilton Table 7.3

-2,226-,671-,0522,4181,282-,206-,0472,894141,0495

-2,225-,671-,0522,4181,282-,206-,0472,893141,0494

-2,184-,662-,0502,4011,269-,204-,0462,859141,0543

-1,844-,580-,0372,2391,147-,187-,0412,538141,4822

-1,074-,365-,0151,764,782-,130-,0271,565147,0281Step1

-0,276209,212Step0

nodadkidsfemalehsccontameduclivedConst

Coefficients
-2 Log 

likelihoodIteration
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Is the model in table 7.3 better than the model 
in table 7.2 ?

• LL(model in 7.3) = 141,049/(-2)
• LL(model in 7.2) = 149,382/(-2)

• 
 = -2[LL(model 7.2) - LL(model 7.3)]

• Find 
 value 

• Find H
• Look up the table of the chisquare distribution 



Ref.: http://www.svt.ntnu.no/iss/Erling.Berge/ Fall 2009

© Erling Berge 2009 245

Fall 2009 © Erling Berge 2009 489

The model of the probability of observing 
y=1 for person i

   
1

0
1

exp( )1
Pr( 1)

1 exp 1 exp( )

where the logit  is a linear function 

of the explanatory variables

i
i i

i i

K

i j ji
j

L
y E y x

L L

L X




   
  

   

|

It is not easy to interpret the meaning of the 
coefficients just based on this formula
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The odds ratio

• The odds ratio, O, can  be interpreted as the 
relative effect of having one variable value 
rather than another 

• e.g. if xki = t+1 in Li’ and xki = t in Li

• O = Oi (Yi=1| Li’)/ Oi (Yi=1| Li)
= exp[Li’ ]/ exp[Li] 
= exp[k]

• Why k ?
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The odds ratio : example I
• The Odds for answering yes = 

eb0+b1*Alder+b2*Kvinne+b3*E.utd+b4*Barn i HH

• The odds ratio for answering yes between women and men =
0 1 2 3 4

2

0 1 2 3 4

* *1 * . * _ _

* *0 * . * _ _

b b Alder b b E utd b Barn i HH
b

b b Alder b b E utd b Barn i HH

e
e

e

   

    

Remember the rules of power exponents
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The odds ratio : example II

• The Odds for answering yes given one 
year of extra education

 0 1 2 3 4

3

0 1 2 3 4

* * * . 1 * _ _

* * * . * _ _

b b Alder b Kvinne b E utd b Barn i HH
b

b b Alder b Kvinne b E utd b Barn i HH

e
e

e

    

    

Remember the rules of power exponents
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Example from Hamilton table 7.2

• What is the odds ratio for yes to closing the 
school from one year extra education?

• The odds ratio is the ratio of two odds where 
one odds is the odds for a person with one 
year extra education

0 1 2 3 4

0 1 2 3 4

2

2

2

* *( 1) * *

* * * *

*( 1)

*

b b ÅrBuddIByen b Utdanning b UreiningEigEigedom b MangeHSCmøter

b b ÅrBuddIByen b Utdanning b UreiningEigEigedom b MangeHSCmøter

b Utdanning
b

b Utdanning

e

e

e
e

e

    

   



 
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Example from Hamilton table 7.2 cont. 

• Odds ratio = Exp{b2} = exp(-0,166) = 0,847

• One extra year of education implies that the odds is 
reduced with a factor of 0.847

• One may also say that the odds has increased with a 
factor of 

100(0,847-1)% = -15,3% 

• Meaning that it has declined with 15,3% 
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Conditional Effect Plot

• Set all x-variables except xk to fixed values and enter 
these into the equation for the logit

• Plot Pr(Y=1) as a function of xk i.e. 

• P =1/(1+exp[-L]) = 1/(1+exp[-konst - bkxk])

for all reasonable values of xk ,

“konst” is the constant obtained by entering into the 
logit the fixed values of variables other than xk
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Excerpt from Hamilton Table 7.4

8,866,10112,6921,3302,182Constant

,16991,00,00,177,01715,696,725-1,731nodad

,30721,00,009,763,000121,591,4902,279hsc

,28101,00,003,664,00617,423,4771,299contam

12,954220,006,00,821,03414,509,093-,197educ

19,268081,001,00,961,01016,559,015-,040lived

MeanMaximumMinimumExp(B)Sig.dfWaldS.E.B

Logit: 

L = 2.182 -0.04*lived -0.197*educ +1.299*contam +2.279*hsc -1.731*nodad

Here we let ”lived” vary and set in reasonable values for other variables
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Conditional effect plot from Hamilton table 7.4 
(fig7.5): effect of living for a long time in town
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y=1/(1+exp(-(2.182-0.04x-0.19712.95+1.2990.28+2.2790.31-1.7310.17)))
y=1/(1+exp(-(2.182-0.04x-0.19712.95+1.2991+2.2791-1.7310)))
y=1/(1+exp(-(2.182-0.04x-0.19712.95+1.2990+2.2790-1.7311)))
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Max
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Conditional effect plot from Hamilton table 7.4 
(fig7.6): effect of pollution on own land
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Coefficients of determination
• Logistic regression does not provide measures comparable 

to the coefficient of determination in OLS regression
• Several measures analogous to R2 have been proposed
• They are often called pseudo R2

• Hamilton uses Aldrich and Nelson’s   

pseudo R2 = 2/(2+n)
where 2 = test statistic for the test of the whole model 
against a model with just a constant and n= the number of 
cases
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Some pseudo R2 in SPSS
• SPSS reports Cox and Snell, Nagelkerke, and in 

multinomial logistic regression also McFadden’s 
proposal for R2

• Aldrich and Nelson’s pseudo R2 can easily be 
computed by ourselves [pseudo R2 = 2/(2+n)]

***McFadden

***Nagelkerke

***Cox and Snell

Pseudo R-Square

Model Summary

*********1

Nagelkerke R 
Square

Cox & 
Snell R 
Square

-2 Log 
likelihoodStep
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Statistical problem: linearity of the logit
• Curvilinearity of the logit can give biased parameter 

estimates

• Scatter plot for y - x is not informative since y only has 2 
values

• To test if the logit is linear in an x-variable one may do as 
follows
– Group the x variable

– For every group find average of y and compute the logit for this 
value

– Make a graph of the logits against the grouped x
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Y=”Closing school” vs. x= ”Years lived in town”

0,00 20,00 40,00 60,00 80,00 100,00
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0,00
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Scatter plot is not 
very informative
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Linearity in logit: example

-1,901-1,901-0,323-0,2410,36400,619Ln(p/(1-p))Logit

,13,13,42,44,59,50,65Mean (=p)
Within
group

22817101413CLOSEN 

131311227147OPENN

45+34-4423-3312-227-114-6<= 3

YEARS LIVED IN WILLIAMSTOWN (Banded)
SCHOOLS 
SHOULD 
CLOSE

Fall 2009 © Erling Berge 2009 504

-3

-2

-1

0

1

ln
(b

/(
1-

b)
)

1 2 3 4 5 6 7

GroupedLived

GroupedLived 1 2 3 4 5 6 7

Chart

Is the  
logit
linear in 
”years 
lived in 
town”?

Maybe! 
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In case of curvilinearity the odds ratio is non-
constant

Assume the logit is curvilinear in education. Then the odds ratio for 
answering yes, adding one year of education, is:

   

   
 

2
0 2

2
0 2

2
2 2

2
2

2

* * * . 1 * . 1

* * * . * .

* . 2 . 1 * 2 . 1
* 2 . 1

0* .

a k utd utd

a k utd utd

utd utd utd utd

utd utd

utd

b b Alder b Kvinne b E utd b E utd

b b Alder b Kvinne b E utd b E utd

b b E utd E utd b b E utd
b b E utd

b E utd

e

e

e e
e

ee

     

   

    
 



 
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Statistical problems: influence

• Influence from outliers and unusual x-values are 
just as problematic in logistic regression as in OLS 
regression

• Transformation of x-variables to symmetry will 
minimize the influence of extreme variable values

• Large residuals are indicators of large influence
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Influence: residuals

• There are several ways to standardize residuals
– ”Pearson residuals”

– ”Deviance residuals”

• Influence can be based on 
– Pearson residual 

– Deviance residual

– Leverage (potential for influence): i.e. the  statistic hj
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Diagnostic graphs

Outlier plots can be based on plots of 
estimated probability of Yi=1 (estimated Pi) 
against

• Delta B ,  Bj , or 

• Delta Pearson Chisquare,  P(j) , or 

• Delta Deviance Chisquare,  D(j)
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SPSS output
• Cook's = delta B in Hamilton

– The logistic regression analogue of Cook's influence statistic. 
A measure of how much the residuals of all cases would 
change if a particular case were excluded from the calculation 
of the regression coefficients. 

• Leverage Value = h in Hamilton
– The relative influence of each observation on the model's fit. 

• DfBeta(s) is not used by Hamilton in logistic regression
– The difference in beta value is the change in the regression 

coefficient that results from the exclusion of a particular case. 
A value is computed for each term in the model, including the 
constant. 

Fall 2009 © Erling Berge 2009 510

Delta B 
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SPSS output from ”Save” (1)

• Unstandardized Residuals
– The difference between an observed value and 

the value predicted by the model. 

• Logit Residual

ˆ;
ˆ ˆ(1 )

i
i i i i

i i

e
e where e y 

 
   




i is the probability that yi = 1; the “hat” means 
estimated value
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SPSS output from ”Save” (2)
• Standardized = Pearson residual

– The command ”standardized” will make SPSS write a variable 
called ZRE_1 nad labelled “Normalized residual”

– This is the same as the Pearson residual in Hamilton 

• Studentized = [SQRT(delta deviance chisquare)]
– The command ”Studentized” will make SPSS write a variable 

called SRE_1 and labelled “Standardized residual”
– This is the same as the square root of ”delta Deviance 

chisquare” in Hamilton, i.e. ”delta Deviance chisquare” = 
(SRE_1)2

• Deviance = Deviance residual
– The command ”Deviance” will make SPSS write a variable 

called DEV_1 and labelled “Deviance value”
– This is the same as the deviance residual in Hamilton 
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Computation of P(i)

• Based on the quantities 
provided by SPSS we can 
compute ”delta Pearson 
chisquare”

• Where it says rj in the 
formula we put in ZRE_1 
and where it says hj we put 
in LEV_1

 
2

2
( )

1
j

P j

j

r

h
 


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Computation of D(i)

1. To find ”delta 
deviance chisquare”
we square SRE_1

2. Alternatively we put 
in dj=DEV_1 and 
hj=LEV_1 in the 
formula 

Based on the quantities provided by SPSS we 
can compute ”Delta Deviance Chisquare”

 
2

2
( )

1
j

D j

j

d

h
 



2
( ) _1* _1D j SRE SRE 
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DeltaDevianceChisquare (with/CaseNO)
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DeltaDevianceChisquare (with/delta B)
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Delta Pearson Chisquare (with/CaseNO)
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Delta Pearson Chisquare (with/ delta B)
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-2,62-2,042,46SRE_1

-,97-,86,95RES_1

,41,34,64COO_1

,97,86,05PRE_1

,00,00,00nodad

1,001,00,00hsc

1,001,00,00contam

12,0012,0012,00educ

1,0040,0068,00lived

,00,001,00Y=close

CaseNo
99

CaseNo
65

CaseNo
96Variables

6,894,146,07DeltaAvviksKjiKv

29,206,4718,34DeltaPearsonKjiKv

,14,16-,08DFB5_1

-,19-,17-,06DFB4_1

-,18-,15-,08DFB3_1

,02,01,02DFB2_1

,00,00,01DFB1_1

-,36,01-,32DFB0_1

-2,61-1,982,42DEV_1

-5,36-2,484,21ZRE_1

CaseNo
99

CaseNo
65

CaseNo
96Variables

Cases with large influence
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From Cases to Patterns

• The figures shown previously are not 
identical to those you see in Hamilton 

• Hamilton has corrected for the effect of 
identical patterns 
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Influence from a shared pattern of x-
variables

• In a logistic regression with few variables many cases will 
have the same value on all x-variables. Every combination 
of x-variable values is called a pattern

• When many cases have the same pattern, every case may 
have a small influence, but collectively they may have 
unusually large influence on parameter estimates

• Influential patterns in x-values can give biased parameter 
estimates 
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Influence: Patterns in x-values

• Predicted value, and hence the residual will be the 
same for all cases with the same pattern

• Influence from pattern j can be found by means of
– The frequency of the pattern 
– Pearson residual
– Deviance residual
– Leverage: i.e. the statistic hj
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Finding X-pattern by means of  SPSS
• In the ”Data” – menu find the command ”Identify duplicate 

cases”
• Mark the x-variables that are used in the model and move 

them to ”Define matching cases by”
• Cross for ”Sequential count of matching cases in each group”

and ”Display frequencies for created variables”
• This produces two new variables. One,  ”MatchSequence”, 

numbers cases sequentially 1, 2, … where several patterns 
are identical. If the pattern is unique this variable has the 
value 0. 

• The other variable, ”Primary…”, has the value 0 for 
duplicates and 1 for unique patterns
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X-patterns in SPSS; Hamilton p238-242

100,0100,0153Total

100,086,386,3132Primary Case

13,713,713,721Duplicate Case

Cumulative
Percent

Valid 
PercentPercentFrequency

100,0100,0153Total

100,02,62,643 [4 patterns with 3 cases]

97,411,111,1172 [17–4=13 patterns with 2 cases]

86,311,111,1171 [17 patterns with 2 or 3 cases]

75,275,275,21150 [115 patterns with 1 case]

Cumulative
Percent

Valid 
PercentPercentFrequency

Sequential count of
matching cases
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Hamilton table 7.6 Symbols

ˆ
jP

2
P

Leverage for pattern jhj

Leverage for case ihi

Deviance Chisquare statistic

Deviance residual for pattern jdj

Pearson Chisquare statistic 

Pearson residual for pattern jrj

Sum of y-values for cases with pattern j (= # cases with pattern j and y=1)Yj

Predicted probability of Y=1 for case with pattern j

# cases with the pattern j (m>=1)mj

# unique patterns of x-values in the data (J<=n)J

2
D
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New values for P(i) and D(i)

• By ”Compute” one may calculate the 
Pearson residual (equation 7.19 in 
Hamilton)  and delta Pearson chisquare
(equation 7.24 in Hamilton) once more. 
This will provide the correct values

• The same applies for deviance residual 
(equation 7.21) and delta deviance 
chisquare (equation 7.25a)
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Leverage and residuals (1)
• Leverage of a pattern is obtained as number of 

cases with the pattern times the leverage of a case 
with this pattern. The leverage of a case is the same 
as in OLS regression

• hj = mj*hi

• Pearson residual can be found from 

 
ˆ

ˆ ˆ1

j j j
j

j j j

Y m P
r

m P P





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Leverage and residuals (2)

• Deviance residual can be found from

   
2 ln ln

ˆ ˆ1

j j j
j j j j

j j j j

Y m Y
d Y m Y

m P m P

                      
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Two Chi-square statistics

• Pearson Chi-square 
statistics

• Deviance Chi-square 
statistics

• Equations are the same for 
both cases and patterns

2 2

1

J

P j
j

r


 

2 2

1

J

D j
j

d


 
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The Chisquare statistics

Both Chisquare statistics:

1. Pearson-Chisquare P  and

2. Deviance-Chisquare D

• Can be read as a test of the null hypothesis 
of no difference between the estimated 
model and a “saturated model”, that is a 
model with as many parameters as there 
are cases/ patterns
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Large values of measures of influence

• Measures of influence based on changes () 
in the statistic/ parameter value due to 
excluded cases with pattern j 

– Bj “delta B” - analogue to Cook’s D

– P(i) “delta Pearson-Chisquare”

– D(i) “delta Deviance-Chisquare”
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What is a large value of P(i) and D(i)

• Both P(i) and D(i) measure how badly the model fits 

the pattern j. Large values indicates that the model would fit 

the data much better if all cases with this pattern were 

excluded

• Since both measures are distributed asymptotically as the 

chisquare distribution, values larger than 4 indicate that a 

pattern affects the estimated parameters “significantly”
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Bj “delta B”

• Measures the 
standardized change 
in the estimated 
parameters (bk) that 
obtain when all 
cases with a given 
pattern j are 
excluded

 
2

2
1

j j
j

j

r h
B

h
 


Larger values means larger 
influence

Bj >= 1 must in any case be 
seen as ”large influence”
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delta B (with caseNO)
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P(i) “Delta Pearson Chisquare”
• Measures the 

reduction in 
Pearson 2 that 
obtains from 
excluding all 
cases with 
pattern  j

 
2

2
( )

1
j

P j
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h
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Delta Pearson Chisquare (with delta B) 
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D(i) “Delta Deviance Chisquare”
• Measures changes in 

deviance that obtains from 
excluding all cases with 
pattern j

• This is equivalent to
 

2
2

( )
1

j
D j

j

d

h
 



K K(j)      
2

( ) 2 LLD j LL

LLK is the LogLikelihood of a model with K parameters estimated 
on the whole sample and LLK(j) is from the estimate of the same 
model when all cases with pattern j are excluded
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Influence of excluded cases/patterns 
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Influence of excluded cases/patterns 
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y=1/(1+exp(-(2.18-0.04x-0.213+1.30.28+2.280.31-1.730.17)))
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Conclusions (1)
Ordinary OLS do not work well for 

dichotomous dependent variables since

• It is impossible to obtain normally distributed errors or 
homoscedasticity, and since

• The model predicts probabilities outside the interval [0-1]

The Logit model Is better

• Likelihood ratio tests statistic can be used to test nested models 
analogous to the F-statistic

• In large samples the chisquare distributed Wald statistic [or the 
normally distributed t=SQRT(Wald)] will be able to test single 
coefficients and provide confidence intervals

• There is no statistic similar to the coefficient of determination
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Conclusions (2)
• Coefficient of estimated models can be interpreted by

1. Log-odds (direct interpretation)
2. Odds
3. Odds ratio
4. Probability (conditional effect plot)

• Non-linearity, case with influence, and multicollinearity 
leads to the same kinds of problems as in OLS 
regression (inaccurate or uncertain parameter values)

• Discrimination leads to problems of uncertain parameter 
values (large variance estimates)

• Diagnostic work is important


